Format results
-
Talk
-
-
Talk
-
Charting Fundamental Interactions
Francesco Sannino CP3-Origins
-
Asymptotic safety with and without supersymmetry
Daniel Litim University of Sussex
-
-
Progress in constructing an Asymptotically safe Standard Model
Steven Abel Durham University
-
Cosmological non-Constant Problem
Niayesh Afshordi University of Waterloo
-
-
UV-complete relativistic field theories and softened gravity
Alberto Salvio Scuola Normale Superiore di Pisa
-
Asymptotic safety of gravity-matter systems and effective universality
Manuel Reichert University of Southern Denmark
-
-
Talk
-
Searching for Light Bosons with Black Hole Superradiance
Savas Dimopoulos Stanford University
-
Superradiant instabilities and rotating black holes
Sam Dolan University of Southampton
PIRSA:18050028 -
Superradiant instabilities and rotating black holes
Avery Broderick University of Waterloo
-
Measuring Stellar-Mass Black Hole Spins via X-ray Spectroscopy
James Steiner Massachusetts Institute of Technology (MIT)
-
Superradiance Beyond the Linear Regime
Frans Pretorius Princeton University
-
Characterization of compact objects with present and future ground-based gravitational-wave detectors
Salvatore Vitale Massachusetts Institute of Technology (MIT)
-
LIGO and Virgo continuous wave searches - Overview and all-sky searches
keith Riles University of Michigan–Ann Arbor
-
Directed and targeted searches for continuous gravitational waves
Sylvia Zhu Albert Einstein Institute
-
-
Talk
-
Gauge Theory, Geometric Langlands, and All That
Edward Witten Institute for Advanced Study (IAS) - School of Natural Sciences (SNS)
-
Overview of the global Langlands correspondence
Dima Arinkin University of Wisconsin-Milwaukee
-
Gauge theory, vertex algebras and quantum Geometric Langland dualities
Davide Gaiotto Perimeter Institute for Theoretical Physics
-
-
Introduction to local geometric Langlands
Sam Raskin The University of Texas at Austin
-
-
-
-
-
Talk
-
Quantifying the evidence for black holes with GW and EM probes
Paolo Pani Instituto Superior Tecnico - Departamento de Física
-
Echoes from the Abyss: Tentative Evidence for Planck-Scale Structure at Black Hole Horizons
Jahed Abedi University of Stavanger (UiS)
-
Improvements on the methods for searching echoes
Julian Westerweck Albert Einstein Institute
-
A model-independent search for gravitational-wave echoes
Archisman Ghosh Institucio Catalana de Recerca I Estudis Avancats (ICREA) - Universitat de Barcelona
-
An alternative significance estimation for the evidence for echoes
Alex Nielsen Albert Einstein Institute
-
Discussion: Evidence for Echoes
PIRSA:17110074 -
Inspiral Tests of Strong-field Gravity and Ringdown Tests of Quantum Black Holes
Kent Yagi University of Virginia
-
A Recipe for Echoes
Aaron Zimmerman The University of Texas at Austin
-
-
Talk
-
PSI 2017/2018 - Quantum Field Theory I - Lecture 14
Dan Wohns Perimeter Institute for Theoretical Physics
PIRSA:17100033 -
PSI 2017/2018 - Quantum Field Theory I - Lecture 13
Dan Wohns Perimeter Institute for Theoretical Physics
PIRSA:17100032 -
PSI 2017/2018 - Quantum Field Theory I - Lecture 12
Dan Wohns Perimeter Institute for Theoretical Physics
PIRSA:17100031 -
PSI 2017/2018 - Quantum Field Theory I - Lecture 11
Dan Wohns Perimeter Institute for Theoretical Physics
PIRSA:17100030 -
PSI 2017/2018 - Quantum Field Theory I - Lecture 10
Dan Wohns Perimeter Institute for Theoretical Physics
PIRSA:17100029 -
PSI 2017/2018 - Quantum Field Theory I - Lecture 9
Dan Wohns Perimeter Institute for Theoretical Physics
PIRSA:17100028 -
PSI 2017/2018 - Quantum Field Theory I - Lecture 8
Dan Wohns Perimeter Institute for Theoretical Physics
PIRSA:17100027 -
PSI 2017/2018 - Quantum Field Theory I - Lecture 7
Dan Wohns Perimeter Institute for Theoretical Physics
PIRSA:17100026
-
-
Talk
-
Welcome and Opening Remarks
Asimina Arvanitaki Perimeter Institute
-
-
A three-dimensional optical lattice clock: precision at the 19th digit
Edward Marti University of Colorado Boulder
-
Measurement of the fine structure constant as a test of the standard model
Holger Mueller University of California, Berkeley
-
Superconducting accelerometer technology for precision tests of gravitation and search for new interactions
Ho Jung Paik University of Maryland, College Park
-
Searching for axions and new short-range forces with resonant sensors
Andrew Geraci University of Nevada Reno
-
Testing Gravity at Extreme Scales
Giorgio Gratta Stanford University
-
Precision Physics in Storage Rings
Yannis Semertzidis Institute for Basic Science - Center for Axion and Precision Physics Research
-
-
Talk
-
-
CRESST Detectors for Dark Matter and Neutrino Physics
Federica Petricca Max Planck Institute
-
Getting the Most out of Liquid Xenon
Rafael Lang Columbia University
-
-
-
Direct detection signals of light dark matter
Josef Pradler University of Vienna
-
-
-
-
Talk
-
Experimental Overview of low-energy precision experiments
Doug Bryman TRIUMF (Canada's National Laboratory for Particle and Nuclear Physics)
-
Precision calculations for muonic bound states
Andrzej Czarnecki University of Alberta
-
The proton radius puzzle
Gil Paz Institute for Advanced Study (IAS)
-
SCET for precision physics at high and low energies
Thomas Becher University of Bern
-
Higher-order corrections for neutrino experiments
Kevin Mcfarland University of Rochester
-
New physics searches in low-energy experiments
Andre de Gouvea Northwestern University
-
-
Simulation tools for neutrino experiments
Gabriel Perdue Fermi National Accelerator Laboratory (Fermilab)
-
-
Talk
-
Discretizing the many-electron Schrodinger Equation
Steven White University of California, Irvine
-
Emergence of conformal symmetry in critical spin chains
Ashley Milsted California Institute of Technology
-
-
-
-
The continuous multi-scale entanglement renormalization ansatz (cMERA)
Guifre Vidal Alphabet (United States)
-
Unitary Networks from the Exact Renormalization of Wavefunctionals
Rob Leigh University of Illinois Urbana-Champaign
-
Tensor networks and Legendre transforms
Brian Swingle Brandeis University
-
-
Talk
-
-
Gravity Basics - 1
Veronika Hubeny University of California, Davis
-
QI Basics - 1
Patrick Hayden Stanford University
-
Entanglement - 1
Robert Spekkens Perimeter Institute for Theoretical Physics
-
A new perspective on holographic entanglement
Matthew Headrick Brandeis University
-
Bell’s Theorem
Adrian Kent University of Cambridge
-
GR: Actions and Equations
David Kubiznak Charles University
-
QI Basics - 2
John Watrous IBM (Canada)
-
-
Talk
-
Gravity Dual of Quantum Information Metric
Tadashi Takayanagi Yukawa Institute for Theoretical Physics
-
A new perspective on holographic entanglement
Matthew Headrick Brandeis University
-
Universal holographic description of CFT entanglement entropy
Thomas Faulkner University of Illinois Urbana-Champaign
-
Geometric Constructs in AdS/CFT
Veronika Hubeny University of California, Davis
-
Do black holes create polyamory
Jonathan Oppenheim University College London
-
Tensor Network Renormalization and the MERA
Glen Evenbly Georgia Institute of Technology
-
Entanglement renormalization for quantum fields
Jutho Haegeman Ghent University
-
Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence
Fernando Pastawski California Institute of Technology
-
-
Tri-Institute Summer School on Elementary Particles 2018
The 2018 Tri-Institute Summer School on Elementary Particles (TRISEP) will be held July 9-20 2018 in Perimeter Institute for Theoretical Physics Waterloo ON, Canada. TRISEP is an international summer school organized jointly by the Perimeter Institute for Theoretical Physics, SNOLAB, and TRIUMF Canada s laboratory for particle and nuclear physics. TRISEP will feature lectures by leading experts in the field of particle physics in its broadest sense and is designed to be very interactive with ample time for questions, discussions and interaction with the speakers. The school is intended for graduate students of all levels who were already exposed to quantum field theory. For further information, please visit http:///.trisep.ca
-
Asymptotic Safety in a Dark Universe
The asymptotic safety paradigm is currently emerging as a highly promising idea for Beyond-Standard-Model physics with key progress in asymptotically safe quantum gravity and asymptotically safe matter models. The last years have seen not only the development of asymptotically safe gravity-matter models but also the discovery of asymptotically safe beyond Standard Model matter models that are under control in perturbation theory. New exciting avenues in (astro) particle physics are now waiting to be explored. For example although the nature of dark matter is a long-standing riddle it is a fact that experimental searches have so far not provided any direct clues but have instead come up with ever more stringent constraints on theoretically preferred regions of parameter space for dark-matter-models. Thus the key to unraveling this riddle could be a new theoretical paradigm to guide model builders. This workshop aims at exploring whether asymptotic safety can be a candidate for this new paradigm. We aim to bring together experts on phenomenological models and quantum gravity to probe both the theoretical viability and empirical signatures of asymptotically safe extensions of the standard model that include gravity. To facilitate a highly productive meeting that can trigger new collaborations each talk will be followed up by 15-20 minutes discussion time. Further each day of the workshop will feature a dedicated discussion session. Participants will be encouraged to contribute questions for the discussion both before as well as during the workshop. The last day of the workshop will conclude with a roadmap discussion during which all participants will be given the opportunity to propose concrete suggestions for follow-up work that might lead into future joint projects.
-
Searching for New Particles with Black Hole Superradiance
Black hole superradiance is a fascinating process in general relativity and a unique window on ultralight particles beyond the standard model. Bosons -- such as axions and dark photons -- with Compton wavelengths comparable to size of astrophysical black holes grow exponentially to form large clouds spinning down the black hole in the process and produce monochromatic continuous gravitational wave radiation. In the era of gravitational wave astronomy and increasingly sensitive observations of astrophysical black holes and their properties superradiance of new light particles is a promising avenue to search for new physics in regimes inaccessible to terrestrial experiments. This workshop will bring together theorists data analysts and observers in particle physics gravitational wave astronomy strong gravity and high energy astrophysics to explore the signatures of black hole superradiance and to study the current and future possibilities of searching for new particles with black holes.
-
Gauge Theory, Geometric Langlands and Vertex Operator Algebras
The workshop will explore the relation between boundary conditions in four-dimensional gauge theory the Geometric Langlands program and Vertex Operator Algebras.
-
Quantum Black Holes in the Sky?
The past decade has witnessed significant breakthroughs in understanding the quantum nature of black holes, with insights coming from quantum information theory, numerical relativity, and string theory. At the same time, astrophysical and gravitational wave observations can now provide an unprecedented window into the phenomenology of black hole horizons. This workshop seeks to bring together leading experts in these fields to explore new theoretical and observational opportunities and synergies that could improve our physical understanding of quantum black holes.
-
PSI 2017/2018 - Quantum Field Theory I (Wohns, Ali)
PSI 2017/2018 - Quantum Field Theory I (Wohns, Ali) -
Experimental techniques in table-top fundamental physics
In the last few years there has been a resurgence of interest in small scale high sensitivity experiments that look for new forces and new particles beyond the Standard Model. They promise to expand our understanding of the Cosmos and possibly explain mysteries such as Dark matter in a way that is complementary to colliders and other large scale experiments. There is a number of different physics motivations and approaches currently being explored in many on-going and newly proposed experiments and they often share common experimental techniques.Many workshops in this field focus on the theory motivations behind these experiments without emphasis on the details of the experimental techniques that enable precision measurements. There is also substantial experimental expertise across many fields, often outside of fundamental physics community, that can be relevant to ongoing and proposed experiments.Thus, we decided to organize the workshop around some of the common experimental techniques. We hope it will be educational for both experimentalists and theorists and lead to discussions on the best way forward. We would like to bring together experimentalists with different expertise in the hope that it will lead to new ideas through interdisciplinary interactions. For theorists, we expect it to provide better appreciation of the challenges and opportunities in improving the sensitivity of precision measurement experiments.
-
New Directions in Dark Matter and Neutrino Physics
Continuing investment in fundamental weakly-coupled science, primarily through neutrino experiments and dark matter searches, prompts the question: is the maximum possible scientific information going to be extracted from these experiments? Are there new creative uses of the existing and planned facilities that would advance our knowledge of fundamental physics? Are there physics targets that have been overlooked by the current approach? This workshop will attempt to advance discussion of these topics, and concentrate on non-traditional ideas and alternative methods of probing new physics, both at underground laboratories and at high-intensity accelerators. The workshop aims to complement the large international conference, Topics in Astroparticle and Underground Physics 2017, to be held in Sudbury ON July 24-28, by directly preceding that meeting.
-
Radiative Corrections at the Intensity Frontier of Particle Physics
Radiative Corrections at the Intensity Frontier of Particle Physics
-
Tensor Networks for Quantum Field Theories II
Tensor Networks for Quantum Field Theories II -
-
Quantum Information in Quantum Gravity II
Quantum Information in Quantum Gravity II