Format results

Talk

Lecture  Celestial Holography Ia
PIRSA:24070002 
Lecture  Canonical a
PIRSA:24070003 
Lecture  Celestial Holography Ib
PIRSA:24070004 
Lecture  Amplitudes a
PIRSA:24070005 
Vision Talk
PIRSA:24070006 
Lecture  Celestial Holography IIa
PIRSA:24070007 
Lecture  Canonical b
PIRSA:24070008 
Lecture  Celestial Holography IIb
PIRSA:24070009


Talk





Contributed Talks
Jessie Muir, Kazuya Koyama, Martin Kunz, Hanyu Zhang 




Talk

Welcome & Happy 15th Anniversary
PIRSA:24060001 

Keynote
Shane Farnsworth Max Planck Institute for Gravitational Physics  Albert Einstein Institute (AEI)
PIRSA:24060003 
Driving Quantum Readiness  An Innovation Perspective
Sonali Mohapatra National Quantum Computing Centre
PIRSA:24060004 
My NonGeodesic Career Trajectory: From Entrepreneurship to Data & AI Consulting
Alexandre VincartEmard Avanade Inc (Montreal)
PIRSA:24060005 
Solid State Detectors for LowMass Dark Matter Searches
Miriam Diamond Arthur B. McDonaldCanadian Astroparticle Physics Research Institute
PIRSA:24060006 

Cohort Project Presentation  "Catching Up": Holography
PIRSA:24060008


Talk


Repetition Code Revisited
Matthew Fisher University of California, Santa Barbara


Stability of mixedstate quantum phases via finite Markov length
Shengqi Sang Perimeter Institute for Theoretical Physics


Universal bound on topological gap
Liang Fu Massachusetts Institute of Technology (MIT)  Department of Physics

Mapping ground states to stringnets
Daniel Ranard Massachusetts Institute of Technology (MIT)

Sequential Quantum Circuit
Xie Chen California Institute of Technology


Talk

Opening Remarks
PIRSA:24050051 

Restricted Boltzmann Machines (RBMs)
Mohamed Hibat Allah Perimeter Institute for Theoretical Physics






Talk


Cosmology from Galaxy Surveys
Jessica Muir Perimeter Institute for Theoretical Physics
PIRSA:24050063 
Black holes and gravitational waves
Luis Lehner Perimeter Institute for Theoretical Physics
PIRSA:24050065


Talk


Values for compiled XOR nonlocal games
Connor Paddock University of Ottawa

Reliable quantum computational advantages from quantum simulation
Juani Bermejo Vega University of Granada







Talk

String Theory Lecture
Davide Gaiotto Perimeter Institute for Theoretical Physics

String Theory Lecture
Davide Gaiotto Perimeter Institute for Theoretical Physics

String Theory Lecture
Davide Gaiotto Perimeter Institute for Theoretical Physics

String Theory Lecture
Davide Gaiotto Perimeter Institute for Theoretical Physics

String Theory Lecture
Davide Gaiotto Perimeter Institute for Theoretical Physics

String Theory Lecture
Davide Gaiotto Perimeter Institute for Theoretical Physics

String Theory Lecture
Davide Gaiotto Perimeter Institute for Theoretical Physics

String Theory Lecture
Davide Gaiotto Perimeter Institute for Theoretical Physics


Talk

Strong Gravity Lecture
William East Perimeter Institute for Theoretical Physics

Strong Gravity Lecture
William East Perimeter Institute for Theoretical Physics

Strong Gravity Lecture
William East Perimeter Institute for Theoretical Physics

Strong Gravity Lecture
William East Perimeter Institute for Theoretical Physics

Strong Gravity Lecture
William East Perimeter Institute for Theoretical Physics

Strong Gravity Lecture
William East Perimeter Institute for Theoretical Physics

Strong Gravity Lecture
William East Perimeter Institute for Theoretical Physics

Strong Gravity Lecture
William East Perimeter Institute for Theoretical Physics


Talk

Mathematical Physics Lecture
Kevin Costello Perimeter Institute for Theoretical Physics

Mathematical Physics Lecture
Kevin Costello Perimeter Institute for Theoretical Physics

Mathematical Physics Lecture
Kevin Costello Perimeter Institute for Theoretical Physics

Mathematical Physics Lecture
Kevin Costello Perimeter Institute for Theoretical Physics

Mathematical Physics Lecture
Kevin Costello Perimeter Institute for Theoretical Physics

Mathematical Physics Lecture
Kevin Costello Perimeter Institute for Theoretical Physics

Mathematical Physics Lecture
Kevin Costello Perimeter Institute for Theoretical Physics

Mathematical Physics Lecture
Kevin Costello Perimeter Institute for Theoretical Physics


Talk

Quantum Gravity Lecture
Aldo Riello Perimeter Institute for Theoretical Physics

Quantum Gravity Lecture
Aldo Riello Perimeter Institute for Theoretical Physics

Quantum Gravity Lecture
Aldo Riello Perimeter Institute for Theoretical Physics

Quantum Gravity Lecture
Aldo Riello Perimeter Institute for Theoretical Physics

Quantum Gravity Lecture
Aldo Riello Perimeter Institute for Theoretical Physics

Quantum Gravity Lecture
Aldo Riello Perimeter Institute for Theoretical Physics

Quantum Gravity Lecture
Aldo Riello Perimeter Institute for Theoretical Physics

Quantum Gravity Lecture
Aldo Riello Perimeter Institute for Theoretical Physics


Talk

Machine Learning Lecture
Damian Pope Perimeter Institute for Theoretical Physics


Machine Learning Lecture
Mohamed Hibat Allah Perimeter Institute for Theoretical Physics

Machine Learning Lecture
Mohamed Hibat Allah Perimeter Institute for Theoretical Physics

Machine Learning Lecture
Mohamed Hibat Allah Perimeter Institute for Theoretical Physics

Machine Learning Lecture
Mohamed Hibat Allah Perimeter Institute for Theoretical Physics

Machine Learning Lecture
Mohamed Hibat Allah Perimeter Institute for Theoretical Physics

Machine Learning Lecture
Mohamed Hibat Allah Perimeter Institute for Theoretical Physics


Celestial Holography Summer School 2024
Perimeter Institute is happy to host the inaugural summer school for the Simons Collaboration on Celestial Holography July 2226 in Waterloo, ON. The program will feature lectures on background material relevant for graduate students and postdocs interested in this emerging subfield, paired with vision talks on exciting future research directions.
:: :: ::

50 Years of Horndeski Gravity: Exploring Modified Gravity
Recent years have seen a flood of new data, from gravitational wave observations of merging black holes and neutron stars to precision probes of cosmology, which allow for unprecedented tests of our understanding of gravity. Going handinhand with this, there has been significant recent progress on the theoretical side in terms of formulating modified theories of gravity, and using them to make detailed predictions, including in the nonlinear and dynamical regime, which can be confronted with the observations.
We are excited to announce a landmark conference that plans to delve into the forefront of research on modified theories of gravity and brings together leading experts from different disciplines including observational astrophysicists, numerical relativists, cosmologists and mathematical physicists to explore the present status of modified theories of gravity and envision their future theoretical development and implications for observations.
This conference is also timed to coincide with the 50th anniversary of pioneering work in this area carried out by Gregory Horndeski in the Waterloo Mathematical Physics Community. Hosted jointly by Perimeter Institute and the University of Waterloo, this conference will serve as a forum for researchers from different disciplines to exchange ideas at the cutting
edge of gravitational physics.
Presented by:
Sponsored in part by Gravity Theory Trust
:: :: ::Topics:
• Modified Gravity Theories: Theoretical Framework and Models
• Tests of modified Gravity with Gravitational Waves (LIGO/LISA/PTA)
• Astrophysical/cosmological tests of gravity
• Mathematical structure of Modified gravity
• Observational tests of quantum gravity
• Modified gravity in the early universeConference Structure:
The conference will feature a balanced blend of plenary sessions (invited Speakers), contributed talks, panel discussions and poster presentations for students.
• Keynote presentations by renowned physicists in the field, discussing the impact of Horndeski theories and other modified theories of gravity on cosmology, dark energy, and black hole physics.
• Contributed talks: prioritizing earlycareer researchers
• Panel discussions on emerging research directions, unresolved questions, and potential applications of Horndeski theories.
• Poster sessions for earlycareer researchers and graduate students to showcase their work and receive feedback from senior scientists.:: :: ::
Scientific Organizers:
 Ghazal Geshnizjani (Perimeter Institute, SOC Chair)
 William East (Perimeter Institute)
 Levon Pogosian (Simon Fraser University, Perimeter Institute Affiliate)
 Niayesh Afshordi (Perimeter Institute, U Waterloo, LOC Chair)
 Will Percival (Perimeter Institute, U Waterloo)
 Florian Girelli (U Waterloo, Perimeter Institute Affiliate)
 Jerome Quintin (U Waterloo, Perimeter Institute)
 Alex Krolewski (U Waterloo, Perimeter Institute, CITA)
:: :: ::

PSI 15th Anniversary Reunion
PSIons celebrate 15 years of Perimeter Scholars International with the first ever PSI reunion event!
Join us for 3 days that include:
 3 former PSI Keynote Speakers in Industry
 3 former PSI Speakers in Academia
 A chance to win 1 of 7 Grants of up to 5000 CAD each for a PSI class project to be developed and presented at the reunion (see Call for Projects for details)
 Social events with your cohorts and PSI special guests
 Lots of time to connect with classmates and PSIons, while immersing yourself in Perimeter’s lively research and collaboration environment.
_______________________________________________________
The Perimeter Scholars International (PSI) Master's program is offered in collaboration by Perimeter Institute and the University of Waterloo.

Physics of Quantum Information
The dialogue between quantum information and quantum matter has fostered notable progress in both fields. Quantum information science has revolutionized our understanding of the structure of quantum manybody systems and novel forms of outofequilibrium quantum dynamics. The advances of quantum matter have provided novel paradigms and platforms for quantum information processing.
This conference aims to bring together leading experts at the intersections of quantum information and quantum matter. Key topics include: (i) quantum error correction, (ii) quantum dynamics, and (iii) quantum simulation.Organizers:
Timothy Hsieh, Perimeter Institute
Beni Yoshida, Perimeter Institute
Zhi Li, Perimeter Institute
TsungCheng Lu, Perimeter Institute
Meenu Kumari, National Research Council Canada:: :: ::

Navigating Quantum and AI Career Trajectories: A Beginner’s MiniCourse on Computational Methods and their Applications
The dynamic field of quantum physics and artificial intelligence is expanding across both academic and industrial landscapes. This minicourse offers an introduction to computational techniques currently utilized in the quantum sector, highlighting nonacademic career paths for individuals interested in quantum physics and machine learning. The program features two lecture series: one on generative modeling  covering topics (such as restricted Boltzmann machines, recurrent neural networks, and transformers)  and the other on quantum machine learning algorithms. Participants will also benefit from practical coding tutorials, networking opportunities, and related events about the landscape of Quantum and AI.
Land Acknowledgement
In the spirit of understanding and learning from what has come before, Perimeter Institute respectfully acknowledges that we are located on the traditional territory of the Attawandaron, Anishnaabeg, and Haudenosaunee peoples.
Perimeter is situated on the Haldimand Tract, land promised to Six Nations, which includes six miles on each side of the Grand River. As settlers, we thank all the generations of people who have taken care of this land for thousands of years. We are connected to our collective commitment to make the promise and the challenge of Truth and Reconciliation real in our communities. 
SciComm Collider 2
The second annual SciComm Collider workshop will bring together a group of the most innovative science communicators helping to connect the public with topics in physics and astronomy for a threeday workshop aimed at sharing ideas, creating new collaborations, and exploring ways to more effectively engage the public with the most exciting ideas in science. The workshop will consist of short seminars, interactive sessions, and opportunities to brainstorm new ideas with fellow communicators and creators, as well as venues for interaction between invited science communicators and Perimeter outreach/communications team members and researchers.

Foundations of Quantum Computational Advantage
The workshop marks the halfway point of the similarly named (FoQaCiA, pronounced "focaccia") collaboration between researchers in Canada and Europe, funded as part of a flagship partnership between NSERC and Horizon Europe.
https://www.foqacia.org/
The goal of FoQaCiA is to develop new foundational approaches to shed light on the relative computational power of quantum devices and classical computers, helping to find the "line in the sand" separating tasks admitting a quantum speedup from those that are classically simulable.
The workshop will focus on the four central interrelated themes of the project:
1. Quantum contextuality, nonclassicality, and quantum advantage
2. The complexity of classical simulation of quantum computation
3. The arithmetic of quantum circuits
4. The efficiency of faulttolerant quantum computation
Our view is that the future success of quantum computing critically depends on advances at the most fundamental level, and that largescale investments in quantum implementations will only pay off if they can draw on additional foundational insights and ideas:: :: ::
Scientific Organizers:
Rui Soares Barbosa (INL  International Iberian Nanotechnology Laboratory)
Anne Broadbent (University of Ottawa)
Ernesto Galvão (INL  International Iberian Nanotechnology Laboratory)
Rob Spekkens (Perimeter Institute)
Jon Yard (Perimeter Institute):: :: ::
FoQaCiA is funded by:

String Theory 2023/24
The course covers the basics of String Theory: bosonic strings, Dbranes, a bit of superstrings.

Strong Gravity 2023/24
This course will introduce some advanced topics in general relativity related to describing gravity in the strong field and dynamical regime. Topics covered include properties of spinning black holes, black hole thermodynamics and energy extraction, how to define horizons in a dynamical setting, formulations of the Einstein equations as constraint and evolution equations, and gravitational waves and how they are sourced. 
Mathematical Physics 2023/24
We will discuss mathematical aspects of classical and quantum field theory, including topics such as: symplectic manifolds and the phase space, symplectic reduction, geometric quantization, ChernSimons theory, and others. 
Quantum Gravity 2023/24
The course centers on an indepth study of the symmetry structure of General Relativity and how this is intimately related to its dynamics and to the challenges posed to its quantization. To achieve this understanding, we will introduce a host of concepts and techniques, broadly (and loosely) known under the name of “Covariant Phase Space Method”. This provides a different perspective on GR’s physics, a perspective in which phase space, rather than spacetime, is front and center. We will apply these ideas and techniques to discuss the socalled Problem of Time, Wald's approach to black hole entropy as a Noether charge, and the relationship between Dirac's Hypersurface Deformation Algebra and GR's symmetries and dynamics. We will also discuss the problem of detecting single gravitons as well as crucial analogies and differences between a quantum electromagnetic and gravitational field. Lecture notes specific for the course will be provided. 
Machine Learning 2023/24
Machine learning has become a very valuable toolbox for scientists including physicists. In this course, we will learn the basics of machine learning with an emphasis on applications for manybody physics. At the end of this course, you will be equipped with the necessary and preliminary tools for starting your own machine learning projects.