Format results
-
-
Talk
-
Quantum Theory Lecture - 092623
Dan Wohns Perimeter Institute for Theoretical Physics
PIRSA:23090098 -
Quantum Theory Lecture - 092523
-
Bindiya Arora Perimeter Institute for Theoretical Physics
-
Dan Wohns Perimeter Institute for Theoretical Physics
PIRSA:23090047 -
-
Quantum Theory Lecture - 092123
-
Bindiya Arora Perimeter Institute for Theoretical Physics
-
Dan Wohns Perimeter Institute for Theoretical Physics
PIRSA:23090046 -
-
Quantum Theory Lecture - 092023
-
Bindiya Arora Perimeter Institute for Theoretical Physics
-
Dan Wohns Perimeter Institute for Theoretical Physics
PIRSA:23090045 -
-
Quantum Theory Lecture - 091823
-
Bindiya Arora Perimeter Institute for Theoretical Physics
-
Dan Wohns Perimeter Institute for Theoretical Physics
PIRSA:23090044 -
-
Quantum Theory Lecture - 091423
-
Bindiya Arora Perimeter Institute for Theoretical Physics
-
Dan Wohns Perimeter Institute for Theoretical Physics
PIRSA:23090043 -
-
Quantum Theory Lecture - 091323
-
Bindiya Arora Perimeter Institute for Theoretical Physics
-
Dan Wohns Perimeter Institute for Theoretical Physics
PIRSA:23090042 -
-
Quantum Theory Lecture - 091123
-
Bindiya Arora Perimeter Institute for Theoretical Physics
-
Dan Wohns Perimeter Institute for Theoretical Physics
PIRSA:23090041 -
-
-
Talk
-
-
Classical Physics Lecture - 092523
Aldo Riello Perimeter Institute for Theoretical Physics
PIRSA:23090035 -
Classical Physics Lecture - 092223
Aldo Riello Perimeter Institute for Theoretical Physics
PIRSA:23090034 -
Classical Physics Lecture - 092023
Aldo Riello Perimeter Institute for Theoretical Physics
PIRSA:23090033 -
Classical Physics Lecture - 091823
Aldo Riello Perimeter Institute for Theoretical Physics
PIRSA:23090032 -
Classical Physics Lecture - 091523
Aldo Riello Perimeter Institute for Theoretical Physics
PIRSA:23090031 -
Classical Physics Lecture - 091323
Aldo Riello Perimeter Institute for Theoretical Physics
PIRSA:23090030 -
Classical Physics Lecture - 091123
Aldo Riello Perimeter Institute for Theoretical Physics
PIRSA:23090029
-
-
Talk
-
-
Talk
-
-
Quantum Field Theory in Curved Spacetime (PM) - 2023-03-31
Sergey Sibiryakov McMaster University
-
Quantum Field Theory in Curved Spacetime (PM) - 2023-03-24
Sergey Sibiryakov McMaster University
-
Quantum Field Theory in Curved Spacetime (PM) - 2023-03-17
Sergey Sibiryakov McMaster University
-
Quantum Field Theory in Curved Spacetime (PM) - 2023-03-10
Sergey Sibiryakov McMaster University
-
Quantum Field Theory in Curved Spacetime (PM) - 2023-03-03
Sergey Sibiryakov McMaster University
-
Quantum Field Theory in Curved Spacetime (AM) - 2023-03-03
Sergey Sibiryakov McMaster University
-
-
Talk
-
Horizon entropy and the Einstein equation - Lecture 20230302
Ted Jacobson University of Maryland, College Park
-
Horizon entropy and the Einstein equation - Lecture 20230228
Ted Jacobson University of Maryland, College Park
-
Horizon entropy and the Einstein equation - Lecture 20230223
Ted Jacobson University of Maryland, College Park
-
Horizon entropy and the Einstein equation - Lecture 20230221
Ted Jacobson University of Maryland, College Park
-
-
Talk
-
-
Talk
-
Mathematical Physics Lecture (230505)
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:23050012 -
Mathematical Physics Lecture (230503)
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:23050011 -
Mathematical Physics Lecture (230501)
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:23050010 -
Mathematical Physics Lecture (230421)
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:23040050 -
Mathematical Physics Lecture (230419)
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:23040049 -
Mathematical Physics Lecture (230404)
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:23040077 -
Mathematical Physics Lecture (230417)
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:23040048 -
Mathematical Physics Lecture (230414)
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:23040047
-
-
-
-
-
-
-
-
Advanced General Relativity (PHYS7840)
Review of elementary general relativity. Timelike and null geodesic congruences. Hypersurfaces and junction conditions. Lagrangian and Hamiltonian formulations of general relativity. Mass and angular momentum of a gravitating body. The laws of black-hole mechanics.
-
General Relativity for Cosmology
This is an advanced graduate course which develops the math and physics of general relativity from scratch up to the highest level. The going will sometimes be steep but I try to be always careful. The purpose is to prepare for studies in quantum gravity, relativistic quantum information, black hole physics and cosmology. Quick summary of the contents: - Coordinate-free Differential Geometry, Weyl versus Ricci curvature versus Torsion, Vielbein Formalism, Spin-connections, Form-valued Tensors, Spectral Geometry, some Cohomology. - Derivations of General Relativity including as a Gauge Theory, Diffeomorphism Invariance vs. Symmetries, Bianchi Identities vs. Local and Global Conservation Laws. - Penrose Diagrams for Black Holes and Cosmology, Types of Horizons, Energy Conditions and Singularity theorems, Properties and Classification of Exact Solutions. - Cosmology and Models of Cosmic Inflation -
Quantum Field Theory in Curved Spacetime
The course is an introduction to quantum field theory in curved spacetime. Upon building up the general formalism, the latter is applied to several topics in the modern theory of gravity and cosmology where the quantum properties of fundamental fields play an essential role.
Topics to be covered:
1) Radiation of particles by moving mirrors
2) Hawking radiation of black holes
3) Production of primordial density perturbations and gravity waves during inflation
4) Statistical properties of the primordial spectra
Required prior knowledge:
Foundations of quantum mechanics and general relativity -
Horizon entropy and the Einstein equation
This mini-course of four lectures is an introduction, review, and critique of two approaches to deriving the Einstein equation from hypotheses about horizon entropy.
It will be based on two papers:
- "Thermodynamics of Spacetime: The Einstein Equation of State" arxiv.org/abs/gr-qc/9504004
- "Entanglement Equilibrium and the Einstein Equation" arxiv.org/abs/1505.04753
We may also discuss ideas in "Gravitation and vacuum entanglement entropy" arxiv.org/abs/1204.6349
Zoom Link: https://pitp.zoom.us/j/96212372067?pwd=dWVaUFFFc3c5NTlVTDFHOGhCV2pXdz09
-
Cosmology (2022/2023)
This class is an introduction to cosmology. We'll cover expansion history of the universe, thermal history, dark matter models, and as much cosmological perturbation theory as time permits. -
Mathematical Physics - Elective (2022/2023)
Title: An introduction to twistors Course Description: Twistor theory, introduced by Penrose many years ago, is a way to reformulate massless fields on four-dimensional space-time in terms of an auxiliary 6-dimensional complex manifold, called twistor space. This course will introduce twistor space and the Penrose correspondence (relating fields on twistor space and space-time), at both classical and quantum levels. We will discuss the twistor realization of self-dual Yang-Mills theory and of self-dual gravity. If time permits we will discuss the connection between twistors and celestial holography.