Format results
-
Talk
-
-
Talk
-
Cosmology
-
Kendrick Smith Perimeter Institute for Theoretical Physics
-
Gang Xu Perimeter Institute for Theoretical Physics
PIRSA:22050017 -
-
Cosmology (2021/2022)
-
Kendrick Smith Perimeter Institute for Theoretical Physics
-
Gang Xu Perimeter Institute for Theoretical Physics
PIRSA:22050013 -
-
Cosmology (2021/2022)
-
Kendrick Smith Perimeter Institute for Theoretical Physics
-
Gang Xu Perimeter Institute for Theoretical Physics
PIRSA:22050012 -
-
Cosmology (2021/2022)
-
Kendrick Smith Perimeter Institute for Theoretical Physics
-
Gang Xu Perimeter Institute for Theoretical Physics
PIRSA:22040085 -
-
Cosmology (2021/2022)
-
Kendrick Smith Perimeter Institute for Theoretical Physics
-
Gang Xu Perimeter Institute for Theoretical Physics
PIRSA:22040084 -
-
Cosmology (2021/2022)
-
Kendrick Smith Perimeter Institute for Theoretical Physics
-
Gang Xu Perimeter Institute for Theoretical Physics
PIRSA:22040086 -
-
Cosmology (2021/2022)
-
Kendrick Smith Perimeter Institute for Theoretical Physics
-
Gang Xu Perimeter Institute for Theoretical Physics
PIRSA:22040083 -
-
Cosmology (2021/2022)
-
Kendrick Smith Perimeter Institute for Theoretical Physics
-
Gang Xu Perimeter Institute for Theoretical Physics
PIRSA:22040082 -
-
-
Talk
-
Quantum Information and holography
-
Aaron Szasz Alphabet (United States)
-
Beni Yoshida Perimeter Institute for Theoretical Physics
PIRSA:22050006 -
-
Quantum Information and holography
-
Aaron Szasz Alphabet (United States)
-
Beni Yoshida Perimeter Institute for Theoretical Physics
PIRSA:22050005 -
-
Quantum Information and holography
-
Aaron Szasz Alphabet (United States)
-
Beni Yoshida Perimeter Institute for Theoretical Physics
PIRSA:22050004 -
-
Quantum Information and holography
-
Aaron Szasz Alphabet (United States)
-
Beni Yoshida Perimeter Institute for Theoretical Physics
PIRSA:22040054 -
-
Quantum Information and holography
-
Aaron Szasz Alphabet (United States)
-
Beni Yoshida Perimeter Institute for Theoretical Physics
PIRSA:22040053 -
-
Quantum Information and holography
-
Aaron Szasz Alphabet (United States)
-
Beni Yoshida Perimeter Institute for Theoretical Physics
PIRSA:22040052 -
-
Quantum Information and holography
-
Aaron Szasz Alphabet (United States)
-
Beni Yoshida Perimeter Institute for Theoretical Physics
PIRSA:22040051 -
-
Quantum Information and holography
-
Aaron Szasz Alphabet (United States)
-
Beni Yoshida Perimeter Institute for Theoretical Physics
PIRSA:22040050 -
-
-
Talk
-
-
-
Machine Learning (2021/2022)
Lauren Hayward Perimeter Institute for Theoretical Physics
PIRSA:22050009 -
-
-
Machine Learning (2021/2022)
Lauren Hayward Perimeter Institute for Theoretical Physics
PIRSA:22040073 -
Machine Learning (2021/2022)
Lauren Hayward Perimeter Institute for Theoretical Physics
PIRSA:22040072 -
Machine Learning (2021/2022)
Lauren Hayward Perimeter Institute for Theoretical Physics
PIRSA:22040071
-
-
Talk
-
Ads/CFT
-
Pedro Vieira Perimeter Institute for Theoretical Physics
-
Gang Xu Perimeter Institute for Theoretical Physics
PIRSA:22040109 -
-
AdS/CFT
-
Gang Xu Perimeter Institute for Theoretical Physics
-
Pedro Vieira Perimeter Institute for Theoretical Physics
PIRSA:22040013 -
-
AdS/CFT
-
Gang Xu Perimeter Institute for Theoretical Physics
-
Pedro Vieira Perimeter Institute for Theoretical Physics
PIRSA:22040014 -
-
AdS/CFT
-
Gang Xu Perimeter Institute for Theoretical Physics
-
Pedro Vieira Perimeter Institute for Theoretical Physics
PIRSA:22040012 -
-
AdS/CFT 2021/2022
-
Pedro Vieira Perimeter Institute for Theoretical Physics
-
Gang Xu Perimeter Institute for Theoretical Physics
PIRSA:22040011 -
-
AdS/CFT 2021/2022
-
Pedro Vieira Perimeter Institute for Theoretical Physics
-
Gang Xu Perimeter Institute for Theoretical Physics
PIRSA:22030045 -
-
AdS/CFT
-
Gang Xu Perimeter Institute for Theoretical Physics
-
Pedro Vieira Perimeter Institute for Theoretical Physics
PIRSA:22030100 -
-
-
-
Talk
-
Classical and Quantum Chaos 2021/2022 - Lecture 14
Meenu Kumari National Research Council Canada (NRC)
PIRSA:22030058 -
Classical and Quantum Chaos 2021/2022 - Lecture 13
Meenu Kumari National Research Council Canada (NRC)
PIRSA:22030057 -
Classical and Quantum Chaos 2021/2022 - Lecture 12
Meenu Kumari National Research Council Canada (NRC)
PIRSA:22030056 -
Classical and Quantum Chaos 2021/2022 - Lecture 11
Meenu Kumari National Research Council Canada (NRC)
PIRSA:22030055 -
Classical and Quantum Chaos 2021/2022 - Lecture 10
Meenu Kumari National Research Council Canada (NRC)
PIRSA:22030054 -
Classical and Quantum Chaos 2021/2022 - Lecture 9
Meenu Kumari National Research Council Canada (NRC)
PIRSA:22030053 -
Classical and Quantum Chaos 2021/2022 - Lecture 8
Meenu Kumari National Research Council Canada (NRC)
PIRSA:22030052 -
Classical and Quantum Chaos 2021/2022 - Lecture 7
Meenu Kumari National Research Council Canada (NRC)
PIRSA:22030112
-
-
Talk
-
Quantum Fields and Strings 2021/2022 - Lecture 3
Dan Wohns Perimeter Institute for Theoretical Physics
-
Quantum Fields and Strings - Lecture 2
Dan Wohns Perimeter Institute for Theoretical Physics
-
Quantum Fields and Strings 2021/2022 -Lecture 1
Dan Wohns Perimeter Institute for Theoretical Physics
-
-
Talk
-
-
Talk
-
Quantum Information 2021/2022
-
Eduardo Martin-Martinez University of Waterloo
-
Philippe Allard Guerin Institute for Quantum Optics and Quantum Information (IQOQI) - Vienna
PIRSA:22030081 -
-
Quantum Information 2021/2022
-
Eduardo Martin-Martinez University of Waterloo
-
Philippe Allard Guerin Institute for Quantum Optics and Quantum Information (IQOQI) - Vienna
PIRSA:22030080 -
-
Quantum Information 2021/2022
-
Eduardo Martin-Martinez University of Waterloo
-
Philippe Allard Guerin Institute for Quantum Optics and Quantum Information (IQOQI) - Vienna
PIRSA:22030079 -
-
Quantum Information 2021/2022
-
Eduardo Martin-Martinez University of Waterloo
-
Philippe Allard Guerin Institute for Quantum Optics and Quantum Information (IQOQI) - Vienna
PIRSA:22030078 -
-
Quantum Information 2021/2022
-
Eduardo Martin-Martinez University of Waterloo
-
Philippe Allard Guerin Institute for Quantum Optics and Quantum Information (IQOQI) - Vienna
PIRSA:22030077 -
-
Quantum Information 2021/2022
-
Eduardo Martin-Martinez University of Waterloo
-
Philippe Allard Guerin Institute for Quantum Optics and Quantum Information (IQOQI) - Vienna
PIRSA:22030076 -
-
Quantum Information 2021/2022
-
Eduardo Martin-Martinez University of Waterloo
-
Philippe Allard Guerin Institute for Quantum Optics and Quantum Information (IQOQI) - Vienna
PIRSA:22030075 -
-
Quantum Information 2021/2022
-
Eduardo Martin-Martinez University of Waterloo
-
Philippe Allard Guerin Institute for Quantum Optics and Quantum Information (IQOQI) - Vienna
PIRSA:22030074 -
-
-
Talk
-
-
Talk
-
PSI Lecture - Condensed Matter - Lecture 15
Aaron Szasz Alphabet (United States)
-
PSI Lecture - Condensed Matter - Lecture 14
Aaron Szasz Alphabet (United States)
-
PSI Lecture - Condensed Matter - Lecture 13
Aaron Szasz Alphabet (United States)
-
PSI Lecture - Condensed Matter - Lecture 12
Aaron Szasz Alphabet (United States)
-
PSI Lecture - Condensed Matter - Lecture 11
Aaron Szasz Alphabet (United States)
-
PSI Lecture - Condensed Matter - Lecture 10
Aaron Szasz Alphabet (United States)
-
PSI Lecture - Condensed Matter - Lecture 9
Aaron Szasz Alphabet (United States)
-
PSI Lecture - Condensed Matter - Lecture 8
Aaron Szasz Alphabet (United States)
-
-
Talk
-
Summer Undergrad 2020 - Quantum Information - Lecture 5
Alioscia Hamma University of Naples Federico II
-
Summer Undergrad 2020 - Quantum Information - Lecture 4
Alioscia Hamma University of Naples Federico II
-
Summer Undergrad 2020 - Quantum Information - Lecture 3
Alioscia Hamma University of Naples Federico II
-
Summer Undergrad 2020 - Quantum Information - Lecture 2
Alioscia Hamma University of Naples Federico II
-
Summer Undergrad 2020 - Quantum Information - Lecture 1
Alioscia Hamma University of Naples Federico II
-
-
Quantum Gravity (2021-2022)
Topics will include (but are not limited to): Canonical formulation of constrained systems, The Dirac program, First order formalism of gravity, Loop Quantum Gravity, Spinfoam models, Research at PI and other approaches to quantum gravity. -
Cosmology (2021/2022)
This class is an introduction to cosmology. We'll cover expansion history of the universe, thermal history, dark matter models, and as much cosmological perturbation theory as time permits. -
Quantum Information and holography (2021/2022)
Topics will include (but are not limited to): - Quantum error correction in quantum gravity and condensed matter - Quantum information scrambling and black hole information - Physics of random tensor networks and random unitary circuits -
Machine Learning (2021/2022)
This course is designed to introduce modern machine learning techniques for studying classical and quantum many-body problems encountered in condensed matter, quantum information, and related fields of physics. Lectures will focus on introducing machine learning algorithms and discussing how they can be applied to solve problem in statistical physics. Tutorials and homework assignments will concentrate on developing programming skills to study the problems presented in lecture. -
-
Classical and Quantum Chaos 2021/2022
Chaos, popularly known as the butterfly effect, is a ubiquitous phenomenon that renders a system's evolution unpredictable due to extreme sensitivity to initial conditions. Within the context of classical physics, it often occurs in nonintegrable Hamiltonian systems and is characterized by positive Lyapunov exponents. On the other hand, the notion of nonintegrability and chaos in quantum physics is still not well-understood and is an area of active research. Several signatures have been studied in the literature to identify quantum chaos but all of them fall short in some way or the other. In this course, we will first discuss the notions of classical integrability, and classical chaos and its characterization with Lyapunov exponents. Then, we will discuss a few well-studied signatures of quantum chaos and the subtleties associated with them. -
Quantum Fields and Strings 2021/2022
This course covers three distinct topics: conformal field theory, anomalies, and string theory. The conformal field theory section of the course introduces conformal transformation and the conformal algebra, n-point functions in CFTs, and OPEs. The anomalies portion of the course focuses on the functional integral derivation of the chiral anomaly. The string theory part of the course derives the bosonic string spectrum and introduces T-duality and D-branes. -
Geometry and Topology for Physicists 2021/2022
The aim of this course is to introduce concepts in topology and geometry for applications in theoretical physics. The topics will be chosen depending on time availability from the following list: topological manifolds and smooth manifolds, differential forms and integration on manifolds, Lie groups and Lie algebras, and Riemann surfaces, cohomology and the fundamental group. -
Quantum Information 2021/2022
We will review the notion of entanglement in quantum mechanics form the point of view of information theory, and how to quantify it and distinguish it from classical correlations. We will derive Bell inequalities and discuss their importance, and how quantum information protocols can use entanglement as a resource. Then we will analyze measurement theory in quantum mechanics, the notion of generalized measurements and quantum channels and their importance in the processing and transmission of information. We will introduce the notions of quantum circuits and see some of the most famous algorithms in quantum information processing, as well as in quantum cryptography. We will also talk about the notion of distances and fidelity between states from the point of view of information theory and we will end with a little introduction to the notions of relativistic quantum information. -
-
PSI Lecture - Condensed Matter
PSI Lecture - Condensed Matter -
Summer Undergrad 2020 - Quantum Information
The aim of this course is to understand the thermodynamics of quantum systems and in the process to learn some fundamental tools in Quantum Information. We will focus on the topics of foundations of quantum statistical mechanics, resource theories, entanglement, fluctuation theorems, and quantum machines.