Format results

Talk

GPTs and the probabilistic foundations of quantum theory  Lecture
Alexander Wilce Susquehanna University

GPTs and the probabilistic foundations of quantum theory  Lecture
Alexander Wilce Susquehanna University

GPTs and the probabilistic foundations of quantum theory  Lecture
Alexander Wilce Susquehanna University

GPTs and the probabilistic foundations of quantum theory  Lecture
Alexander Wilce Susquehanna University

GPTs and the probabilistic foundations of quantum theory  Lecture
Alexander Wilce Susquehanna University

GPTs and the probabilistic foundations of quantum theory  Lecture
Alexander Wilce Susquehanna University

GPTs and the probabilistic foundations of quantum theory  Lecture
Alexander Wilce Susquehanna University


Talk

Quantum Field Theory for Cosmology  Lecture 20240404
Achim Kempf University of Waterloo

Quantum Field Theory for Cosmology  Lecture 20240402
Achim Kempf University of Waterloo

Quantum Field Theory for Cosmology  Lecture 20240328
Achim Kempf University of Waterloo

Quantum Field Theory for Cosmology  Lecture 20240326
Achim Kempf University of Waterloo

Quantum Field Theory for Cosmology  Lecture 20240321
Achim Kempf University of Waterloo

Quantum Field Theory for Cosmology  Lecture 20240319
Achim Kempf University of Waterloo

Quantum Field Theory for Cosmology  Lecture 20240314
Achim Kempf University of Waterloo

Quantum Field Theory for Cosmology  Lecture 20240312
Achim Kempf University of Waterloo


Talk


Talk

Particle Physics Lecture
Junwu Huang Perimeter Institute for Theoretical Physics

Particle Physics Lecture
Junwu Huang Perimeter Institute for Theoretical Physics

Particle Physics Lecture
Junwu Huang Perimeter Institute for Theoretical Physics

Particle Physics Lecture
Junwu Huang Perimeter Institute for Theoretical Physics

Particle Physics Lecture
Junwu Huang Perimeter Institute for Theoretical Physics

Particle Physics Lecture
Junwu Huang Perimeter Institute for Theoretical Physics




Talk

Quantum Information Lecture
Eduardo MartinMartinez Institute for Quantum Computing (IQC)

Quantum Information Lecture
Eduardo MartinMartinez Institute for Quantum Computing (IQC)

Quantum Information Lecture
Eduardo MartinMartinez Institute for Quantum Computing (IQC)

Quantum Information Lecture
Eduardo MartinMartinez Institute for Quantum Computing (IQC)

Quantum Information Lecture
Eduardo MartinMartinez Institute for Quantum Computing (IQC)

Quantum Information Lecture
Eduardo MartinMartinez Institute for Quantum Computing (IQC)

Quantum Information Lecture
Eduardo MartinMartinez Institute for Quantum Computing (IQC)

Quantum Information Lecture
Eduardo MartinMartinez Institute for Quantum Computing (IQC)


Talk

QFT III Lecture
Mykola Semenyakin Perimeter Institute for Theoretical Physics

QFT III Lecture
Mykola Semenyakin Perimeter Institute for Theoretical Physics

QFT III Lecture
Mykola Semenyakin Perimeter Institute for Theoretical Physics

QFT III Lecture
Mykola Semenyakin Perimeter Institute for Theoretical Physics

QFT III Lecture
Mykola Semenyakin Perimeter Institute for Theoretical Physics

QFT III Lecture
Mykola Semenyakin Perimeter Institute for Theoretical Physics

QFT III Lecture
Mykola Semenyakin Perimeter Institute for Theoretical Physics

QFT III Lecture
Mykola Semenyakin Perimeter Institute for Theoretical Physics


Talk

Cosmology Lecture
Kendrick Smith Perimeter Institute for Theoretical Physics

Cosmology Lecture
Kendrick Smith Perimeter Institute for Theoretical Physics

Cosmology Lecture
Kendrick Smith Perimeter Institute for Theoretical Physics

Cosmology Lecture
Kendrick Smith Perimeter Institute for Theoretical Physics

Cosmology Lecture
Kendrick Smith Perimeter Institute for Theoretical Physics

Cosmology Lecture
Kendrick Smith Perimeter Institute for Theoretical Physics

Cosmology Lecture
Kendrick Smith Perimeter Institute for Theoretical Physics

Cosmology Lecture
Kendrick Smith Perimeter Institute for Theoretical Physics


Talk

Quantum Matter Lecture
YinChen He Perimeter Institute for Theoretical Physics

Quantum Matter Lecture
Mohamed Hibat Allah Perimeter Institute for Theoretical Physics

Quantum Matter Lecture
Timothy Hsieh Perimeter Institute for Theoretical Physics

Quantum Matter Lecture
Timothy Hsieh Perimeter Institute for Theoretical Physics

Quantum Matter Lecture
Timothy Hsieh Perimeter Institute for Theoretical Physics

Quantum Matter Lecture
YinChen He Perimeter Institute for Theoretical Physics

Quantum Matter Lecture
YinChen He Perimeter Institute for Theoretical Physics

Quantum Matter Lecture
YinChen He Perimeter Institute for Theoretical Physics


Talk


Analogies between QFT and lattice systems
Anton Kapustin California Institute of Technology (Caltech)  Division of Physics Mathematics & Astronomy

Models of anyons with symmetry: a bulkboundary correspondence
Fiona Burnell University of Minnesota

Twisted Tools for (Untwisted) Quantum Field Theory
Justin Kulp Stony Brook University

Quantum double models and DijkgraafWitten theory with defects
Catherine Meusburger 
Topological sectors in quantum lattice models
Clement Delcamp Institut des Hautes Etudes Scientifiques (IHES)

DouglasReutter 4d TQFT as a generalised orbifold
Vincentas Mulevičius Vilnius University

Weak Hopf symmetric tensor networks
Andras Molnar University of Vienna


Talk

Opening Remarks

Katie Mack Perimeter Institute

Aaron Vincent Queen's University


Dark and visible structures with dissipative dark matter
Sarah Shandera Pennsylvania State University



The First Stars in the Universe as Dark Matter Laboratories
Cosmin Ilie Colgate University

Probing Atomic Dark Matter using Simulated Galactic Subhalo Populations
Caleb Gemmell University of Toronto

Dark matter at high redshifts with JWST
Julian Munoz The University of Texas at Austin

(Dark) Baryogenesis through Asymmetric Reheating in the Mirror Twin Higgs.
Andrija Rasovic University of Toronto


Talk


Talk

Standard Model Lecture
Michael Trott Perimeter Institute for Theoretical Physics

Standard Model Lecture
Michael Trott Perimeter Institute for Theoretical Physics

Standard Model Lecture
Michael Trott Perimeter Institute for Theoretical Physics

Standard Model Lecture
Michael Trott Perimeter Institute for Theoretical Physics

Standard Model Lecture
Michael Trott Perimeter Institute for Theoretical Physics

Standard Model Lecture
Michael Trott Perimeter Institute for Theoretical Physics

Standard Model Lecture
Michael Trott Perimeter Institute for Theoretical Physics

Standard Model Lecture
Michael Trott Perimeter Institute for Theoretical Physics


GPTs and the probabilistic foundations of quantum theory  minicourse
Classical probability theory makes the (mostly, tacit) assumption that any two random experiments can be performed jointly. This assumption seems to fail in quantum theory. A rapidly growing literature seeks to understand QM by placing it in a much broader mathematical landscape of ``generalized probabilistic theories", or GPTs, in which incompatible experiments are permitted. Among other things, this effort has led to (i) a better appreciation that many "characteristically quantum" phenomena (e.g., entanglement) are in fact generic to nonclassical probabilistic theories, (ii) a suite of reconstructions of (mostly, finitedimensional) QM from small packages of assumptions of a probabilistic or operational nature, and (iii) a clearer view of the options available for generalizing QM. This course will offer a survey of this literature, starting from scratch and concluding with a discussion of recent developments.
Mathematical prerequisites: finitedimensional linear algebra, ideally including tensor products and duality, plus some exposure to category theory (though I will briefly review this material as needed).
Scheduling note: There will be 5 lectures from March 1226, then a gap of two weeks before the final 2 lectures held April 16 & 18.
Format: Inperson only; lectures will be recorded for PIRSA but not live on Zoom.

Quantum Field Theory for Cosmology (PHYS785/AMATH872)
This course introduces quantum field theory from scratch and then develops the theory of the quantum fluctuations of fields and particles. We will focus, in particular, on how quantum fields are affected by curvature and by spacetime horizons. This will lead us to the Unruh effect, Hawking radiation and to inflationary cosmology. Inflationary cosmology, which we will study in detail, is part of the current standard model of cosmology which holds that all structure in the universe  such as the distribution of galaxies  originated in tiny quantum fluctuations of a scalar field and of spacetime itself. For intuition, consider that quantum field fluctuations of significant amplitude normally occur only at very small length scales. Close to the big bang, during a brief initial period of nearly exponentially fast expansion (inflation), such smallwavelength but largeamplitude quantum fluctuations were stretched out to cosmological wavelengths. In this way, quantum fluctuations are thought to have seeded the observed inhomogeneities in the cosmic microwave background  which in turn seeded the condensation of hydrogen into galaxies and stars, all closely matching the increasingly accurate astronomical observations over recent years. The prerequisites for this course are a solid understanding of quantum theory and some basic knowledge of general relativity, such as FRW spacetimes.
https://uwaterloo.ca/physicsofinformationlab/teaching/quantumfieldtheorycosmologyamath872phys785w2024
https://pitp.zoom.us/j/96567241418?pwd=U3I1V1g4YXdaZ3psT1FrZUdlYm1zdz09

Advanced General Relativity (PHYS7840)
Review of elementary general relativity. Timelike and null geodesic congruences. Hypersurfaces and junction conditions. Lagrangian and Hamiltonian formulations of general relativity. Mass and angular momentum of a gravitating body. The laws of blackhole mechanics.
Zoom: https://pitp.zoom.us/j/97183751661?pwd=T0szNnRjdUM2dENYNTdmRmJCZVF1QT09

Particle Physics
This course will cover phenomenological studies and experimental searches for new physics beyond the Standard Model, including: naturalness, extra dimension, supersymmetry, grand unification, dark matter candidates (WIMPs and axions) and their detection.


QFT III 2023/24
This survey course introduces some advanced topics in quantum field theory and string theory. Topics may include anomalies, conformal field theory, and bosonic string theory and are subject to change depending on the topics covered in the TBD elective course.

Cosmology 2023/24
This Cosmology course will provide a theoretical overview of the standard cosmological model.
Topics will include: FRW universe, Thermal History, Inflation, Cosmological Perturbation Theory, Structure Formation and Quantum Initial Conditions. 
Quantum Matter 2023/24
This course will cover quantum phases of matter, with a focus on longrange entangled states, topological states, and quantum criticality.

Higher Categorical Tools for Quantum Phases of Matter
Quantum phases have become a staple of modern physics, thanks to their appearance in fields as diverse as condensed matter physics, quantum field theory, quantum information processing, and topology. The description of quantum phases of matter requires novel mathematical tools that lie beyond the old symmetry breaking perspective on phases. Techniques from topological field theory, homotopy theory, and (higher) category theory show great potential for advancing our understanding of the characterization and classification of quantum phases. The goal of this workshop is to bring together experts from across mathematics and physics to discuss recent breakthroughs in these mathematical tools and their application to physical problems.
Scientific Organizers
Lukas Mueller
Alex Turzillo
Davide Gaiotto
Sponsored in part by the Simons Collaboration on Global Categorical Symmetries

Dark Matter, First Light
New observational programs and techniques are opening a window to the first galaxies in the universe and bringing surprises along the way. In this workshop, we'll explore how dark matter phenomenology may have impacted the first stars and galaxies, focusing on how improved modeling and simulations can allow us to use new and upcoming highredshift data to gain insight into dark matter's fundamental nature.
Sponsored in part by:


Standard Model 2023/24
The Standard Model of particle physics is introduced, and reviewed, from a modern effective field theory perspective.