Format results
-
Talk
-
-
-
-
-
Second moment of the GL_3 standard L-function on the critical line. (Online)
Mathew P. YoungICTS:30201 -
-
-
-
-
Talk
-
Lecture - QFT I, PHYS 601
Gang Xu Perimeter Institute for Theoretical Physics
-
Lecture - QFT I, PHYS 601
Gang Xu Perimeter Institute for Theoretical Physics
-
Lecture - QFT I, PHYS 601
Gang Xu Perimeter Institute for Theoretical Physics
-
Lecture - QFT I, PHYS 601
Gang Xu Perimeter Institute for Theoretical Physics
-
Lecture - QFT I, PHYS 601
Gang Xu Perimeter Institute for Theoretical Physics
-
Lecture - QFT I, PHYS 601
Gang Xu Perimeter Institute for Theoretical Physics
-
Lecture - QFT I, PHYS 601
Gang Xu Perimeter Institute for Theoretical Physics
-
Lecture - QFT I, PHYS 601
Gang Xu Perimeter Institute for Theoretical Physics
-
-
Talk
-
Lecture - Statistical Physics, PHYS 602
Emilie Huffman Perimeter Institute for Theoretical Physics
-
Lecture - Statistical Physics, PHYS 602
Emilie Huffman Perimeter Institute for Theoretical Physics
-
Lecture - Statistical Physics, PHYS 602
Emilie Huffman Perimeter Institute for Theoretical Physics
-
Lecture - Statistical Physics, PHYS 602
Emilie Huffman Perimeter Institute for Theoretical Physics
-
Lecture - Statistical Physics, PHYS 602
Emilie Huffman Perimeter Institute for Theoretical Physics
-
Lecture - Statistical Physics, PHYS 602
Emilie Huffman Perimeter Institute for Theoretical Physics
-
Lecture - Statistical Physics, PHYS 602
Emilie Huffman Perimeter Institute for Theoretical Physics
-
Lecture - Statistical Physics, PHYS 602
Emilie Huffman Perimeter Institute for Theoretical Physics
-
-
Talk
-
-
Intensity correlations: imaging and quantum optics in astrophysics
Robin Kaiser The French National Centre for Scientific Research
-
Intensity Interferometry with the H.E.S.S. telescopes
Naomi Vogel ECAP, FAU Erlangen-Nürnberg
-
Progress Toward Multi-Channel Intensity Interferometry with the Southern Connecticut Stellar Interferometer
Elliott Horch Southern Connecticut State University
-
-
The Multi Aperture Spectroscopic Telescope: Status and potential as an intensity interferometry facility
Sagi Ben Ami Weizmann Institute of Science
-
-
Future Astrophysical Targets for Intensity Interferometry
Norman Murray Canadian Institute for Theoretical Astrophysics (CITA)
-
-
Talk
-
A new compact formula for the symmetric Macdonald polynomials via the ASEP and TAZRP
Olya MandelshtamICTS:30054 -
-
The relativistic Toda Lattice and quantum K-Schubert classes of the flag variety
Shinsuke IwaoICTS:30056 -
-
-
Integrable difference equations and orthogonal polynomials with respect to a deformed semicircle distribution
Jérémie BouttierICTS:30045 -
-
-
-
Talk
-
-
Talk
-
Lecture - Quantum Theory, PHYS 605
Dan Wohns Perimeter Institute for Theoretical Physics
-
Lecture - Quantum Theory, PHYS 605
Dan Wohns Perimeter Institute for Theoretical Physics
-
Lecture - Quantum Theory, PHYS 605
Dan Wohns Perimeter Institute for Theoretical Physics
-
Lecture - Quantum Theory, PHYS 605
Dan Wohns Perimeter Institute for Theoretical Physics
-
Lecture - Quantum Theory, PHYS 605
Dan Wohns Perimeter Institute for Theoretical Physics
-
Lecture - Quantum Theory, PHYS 605
Dan Wohns Perimeter Institute for Theoretical Physics
-
Lecture - Quantum Theory, PHYS 605
Dan Wohns Perimeter Institute for Theoretical Physics
-
Lecture - Quantum Theory, PHYS 605
Bindiya Arora Perimeter Institute for Theoretical Physics
-
-
Talk
-
Lecture - Classical Physics, PHYS 776
Aldo Riello Perimeter Institute for Theoretical Physics
PIRSA:24100001 -
Lecture - Classical Physics, PHYS 776
Aldo Riello Perimeter Institute for Theoretical Physics
-
Lecture - Classical Physics, PHYS 776
Aldo Riello Perimeter Institute for Theoretical Physics
PIRSA:24090013 -
Lecture - Classical Physics, PHYS 776
Aldo Riello Perimeter Institute for Theoretical Physics
PIRSA:24090012 -
Lecture - Classical Physics, PHYS 776
Aldo Riello Perimeter Institute for Theoretical Physics
PIRSA:24090011 -
Lecture - Classical Physics, PHYS 776
Aldo Riello Perimeter Institute for Theoretical Physics
PIRSA:24090010 -
Lecture - Classical Physics, PHYS 776
Aldo Riello Perimeter Institute for Theoretical Physics
PIRSA:24090009 -
Lecture - Classical Physics, PHYS 776
Aldo Riello Perimeter Institute for Theoretical Physics
PIRSA:24090008
-
-
Talk
-
Opening Remarks
-
Sonya Gzyl Max Planck Institute of Quantum Optics
-
Timothy Hsieh Perimeter Institute for Theoretical Physics
-
-
-
-
Towards large-scale quantum simulations with trapped ions - Rajibul Islam
Kazi-Rajibul Islam Institute for Quantum Computing (IQC)
-
-
-
-
-
-
Talk
-
A short but up-to-date introduction to partially parabolic or dissipative hyperbolic systems - IV
Raphaël DanchinICTS:29950 -
-
-
A short but up-to-date introduction to partially parabolic or dissipative hyperbolic systems - III
Raphaël DanchinICTS:29949 -
On the flow map and the partial differential equations associated to a non-smooth vector field (Online)
Stefano ModenaICTS:29946 -
-
-
-
-
Talk
-
-
Tutorial: Causal Inference Meets Quantum Physics
Robert Spekkens Perimeter Institute for Theoretical Physics
-
Counterfactual and Graphical Frameworks for Causal Modeling
Thomas Richardson University of Washington
-
-
Relating Wigner's Friend Scenarios to Nonclassical Causal Compatibility, Monogamy Relations, and Fine Tuning
Yìlè Yīng Perimeter Institute for Theoretical Physics
-
Modeling Latent Selection with Structural Causal Models
Leihao Chen University of Amsterdam, Korteweg-de Vries Institute for Mathematics
-
Zero Inflation as a Missing Data Problem: a Proxy-based Approach
Trung Phung Johns Hopkins Whiting School of Engineering
-
-
-
Talk
-
-
Circle Method and Related Topics
Even after one hundred years, the circle method remains one of the most important tools in the analytic theory of numbers. Over the years the method has gone through several modifications, resulting in novel applications. Originally introduced to study the partition function and the Waring problem, the circle method quickly became the most powerful analytic tool to count rational points on varieties. It was also adopted to study problems in the prime number theory. Recently the circle method has been extended to function fields and general number fields, and has been put on a broader adelic and geometric setting. We have also seen some striking recent applications in areas such as analytic theory of L-functions, ergodic theory, and the Langlands program. This workshop will present accessible short lecture series on the circle method and related topics, from experts in the field, aimed at senior graduate students and post-docs. The main aim will be to introduce the audience to various f...
-
Statistical Physics (Core), PHYS 602, October 7 - November 6, 2024
The aim of this course is to explore the main ideas of the statistical physics approach to critical phenomena. We will discuss phase transitions, using the ferromagnetic phase transition and the Ising model as our primary example, with particular emphasis on the renormalisation group approach. Instructor: Emilie Huffman / Maite Dupuis Students who are not part of the PSI MSc program should review enrollment and course format information here: https://perimeterinstitute.ca/graduate-courses -
Quantum Field Theory I (Core), PHYS 601, October 7 - November 6, 2024
The first half of the course explains why fields are desirable when quantum mechanics meets special relativity. The second half introduces different kinds of spinor fields and their interactions. Instructor: Gang Xu Students who are not part of the PSI MSc program should review enrollment and course format information here: https://perimeterinstitute.ca/graduate-courses -
Future Prospects of Intensity Interferometry
Recent advancements in photodetection technologies and spectroscopy hold the promise of transforming intensity interferometry, thereby revolutionizing observational Astronomy by enabling observations to resolve significantly fainter objects than currently possible. This workshop serves as a platform to unite experts in photodetection, theoretical and observational astronomy, as well as observers and theorists from diverse disciplines, to explore the multifaceted capabilities of intensity interferometry.
The workshop's focus spans three key objectives:
- Develop and disseminate novel ideas concerning science cases unique to intensity interferometry.
- Synthesize insights from observers and photodetector experts concerning the requisite technologies and experimental techniques which will allow for new science with intensity interferometry.
- Initiate a concentrated effort to propel the development of large telescope arrays dedicated to intensity interferometry.
This workshop will be exclusively organized in plenary sessions, providing ample time for engaging discussions among participants.
Scientific Organizers
Masha Baryakhtar - University of Washington
Neal Dalal - Perimeter Institute
Marios Galanis - Perimeter Institute
Junwu Huang - Perimeter Institute -
Discrete integrable systems: difference equations, cluster algebras and probabilistic models
Integrable systems share the properties of being exactly solvable in some sense and of having many conserved quantities. Investigating their behavior is key to understanding the wealth of non-integrable models falling in the same universality class. While the first examples of integrable systems were continuous, a large array of discrete integrable systems have been discovered over the last 60 years. These discrete systems hail from various branches of theoretical physics (statistical physics, string theory) and mathematics (combinatorics, representation theory, geometry, probability). They all possess remarkable algebraic structures.This program proposes to explore several interrelated aspects of discrete integrable systems. We will focus on three aspects that are currently active topics of research:1. Integrable difference equations, their soliton solutions and the rich structure of their singularities. Ultradiscretization of these equations, yielding cellular automata (e.g. box-ball...
-
3rd IAGRG School on Gravitation and Cosmology
Gravitation and cosmology allow us to probe the nature of the universe at its largest scales and gain insights into the underlying structure and dynamics of the universe. New observational techniques in the field of cosmology have allowed us to estimate various cosmological parameters with remarkable precision. Recent advancements in observational techniques have revolutionized our understanding of the universe. Some of these techniques include Cosmic Microwave Background (CMB) Observations, Large-Scale Structure Surveys, Supernova Cosmology, Baryon Acoustic Oscillations (BAO), Gravitational Lensing, Redshift Surveys etc. These techniques have collectively allowed cosmologists to estimate parameters such as the Hubble constant, the density of dark matter and dark energy, the curvature of space and the composition of the universe with remarkable accuracy.The third Indian Association for General Relativity and Gravitation (IAGRG) school on Gravitation and Cosmology aims to train young re...
-
Quantum Theory (Core), PHYS 605, September 3 – October 4, 2024
The aim of the first part is to present a brief overview of selected topics in quantum theory. Schrodinger, Heisenberg and Interaction picture is discussed and applied to study time evolution. Density matrix and Feynman path integral are introduced. The second part of the course derives the Feynman rules for scalar quantum field theory and introduces renormalization. Instructor: Bindiya Arora / Dan Wohns Students who are not part of the PSI MSc program should review enrollment and course format information here: https://perimeterinstitute.ca/graduate-courses -
Classical Physics (Core), PHYS 776, September 3 - October 4, 2024
This is a theoretical physics course that aims to review the basics of theoretical mechanics, special relativity, and classical field theory, with the emphasis on geometrical notions and relativistic formalism, thus setting the stage for the forthcoming courses in Quantum Mechanics, and Quantum Field Theory in particular, as well as in General Relativity and Quantum Gravity. Instructor: Aldo Riello Students who are not part of the PSI MSc program should review enrollment and course format information here: https://perimeterinstitute.ca/graduate-courses -
Waterloo-Munich Joint Workshop
Join us for a pioneering joint workshop between renowned research institutions in Munich and Waterloo! This exciting event will focus on the topic of quantum simulation, with additional talks delving into various subjects of quantum science and technology. Designed to include researchers across different levels, from group leaders, postdoctoral fellows, and PhD students, this inaugural collaboration aims to unite scientists from both locations, fostering valuable networking opportunities and promoting interdisciplinary collaboration. Don't miss this extraordinary opportunity to connect, exchange ideas, and shape the future of quantum research together!
-
Deterministic and Stochastic Analysis of Euler and Navier-Stokes Equations
All physical phenomena in areas such as physics, engineering, finance, and biology are inherently nonlinear and therefore described via models of nonlinear partial differential equations (PDEs). The Navier-Stokes and the Euler equations are thought to be the fundamental set of equations governing the motion of fluid flow. Recently, the research area related to fluid flow equations has witnessed multiple seminal new results and groundbreaking techniques. The main aim of the program is to bring in leading researchers from the field of fluid mechanics for an active discussion on these new techniques and exchange of ideas. In his celebrated 1949 paper on statistical hydrodynamics Lars Onsager conjectured that the threshold regularity for the validity of energy conservation of weak solutions to Euler equations is the exponent 1/3. In particular he announced that for larger Hölder exponents any weak solution would conserve the energy, whereas for any smaller exponent there are solutions whi...
-
Causalworlds
Understanding causality is fundamental to science and inspires wide-ranging applications, yet there are several distinct notions of causation. Recently, there have been important developments on the role of causality in quantum physics, relativistic physics and their interplay. These have unearthed a plethora of fascinating open questions regarding the nature of causation, emergence of space-time structure and the limits of quantum information processing. At the same time, causal reasoning has become an important tool in machine learning and statistics, with applications ranging from big data to healthcare. This conference brings together experts from different areas of physics working on questions related to causality, as well as selected researchers who bridge the gap between fundamental research and current industrial applications. The aim of the conference is to provide a venue for cross-pollination of these ideas through scientific exchange between these communities. The conference will focus on the following facets of causality:
• Quantum and classical causal inference
• Indefinite causal order and quantum reference frames
• Causality in quantum field theory and quantum gravity
• Experiments and applications of causality
:: :: ::
Important dates
Paper submission deadline: 24 May 2024 // 31 May 2024
Paper notification: 3 July 2024 Registration deadline (with application for financial assistance): 18 July 2024
Registration deadline: 28 August 2024
Conference: 16-20 September 2024 Update: The submission deadline has been extended to 31st May 2024 for
papers which clearly justify their relevance for the following three
topics: 1) classical causal inference, 2) causality in relativistic physics (including quantum field theory and quantum gravity) and 3) experiments in causality. As we have received a sufficiently high number of submissions on the remaining topics (particularly indefinite causality and quantum causal models), the original deadline of 24th May still holds for submissions in this category. :: :: ::
Call for Abstracts
Prospective speakers can submit a paper for a contributed talk (in person or online) and/or a poster (in person only) via the Call for Abstracts. The Call for Abstracts is now open! Submissions for a talk will automatically be considered for a poster if not accepted for a talk.:: :: ::
Invited Speakers
Jessica Bavaresco (University of Geneva)
Cyril Branciard (CNRS, University Grenoble Alpes)
Rafael Chaves (Federal University of Rio Grande do Norte)
Giulio Chiribella (The University of Hong Kong)
Doreen Fraser (University of Waterloo)
Anne-Catherine de la Hamette (IQOQI Vienna)
Ciarán Lee (Spotify)
Tein van der Lugt (University of Oxford)
Joris M. Mooij (University of Amsterdam)
Mio Murao (University of Tokyo)
Alejandro Pozas-Kerstjens (University of Geneva)
Huw Price (Trinity College, Cambridge)
Renato Renner (ETH Zürich)
Thomas Richardson (University of Washington)
Sally Shrapnel (The University of Queensland)
Sumati Surya (Raman Research Institute)
Rainer Verch (University of Leipzig)
:: :: ::
Programme Committee
V Vilasini (ETH Zürich & Inria, University Grenoble Alpes) (PC Chair)
Augustin Vanrietvelde (Télécom Paris) (PC Co-chair)
Alastair Abbott (Inria, University Grenoble Alpes)
Časlav Brukner (IQOQI Vienna & University of Vienna)
Eric Cavalcanti (Griffith University)
Chris Fewster (University of York)
Lucien Hardy (Perimeter Institute)
Hlér Kristjánsson (Perimeter Institute & IQC & Université de Montréal)
Giulia Rubino (University of Bristol)
Nitica Sakharwade (Università degli Studi di Napoli Federico II)
Robert Spekkens (Perimeter Institute)
Jacopo Surace (Perimeter Institute)
Elie Wolfe (Perimeter Institute)
Lin-Qing Chen (ETH Zürich & IQOQI Vienna)
Hippolyte Dourdent (ICFO Barcelona)
Tamal Guha (University of Hong Kong)
Robin Lorenz (Quantinuum, Oxford)
Maria Papageorgiou (IQOQI Vienna)
Nicola Pinzani (Université libre de Bruxelles)
Marco-Túlio Quintino (Sorbonne Université, Paris)
Marc-Olivier Renou (Inria Paris-Saclay & CPHT, École polytechnique)
David Schmid (ICTQT, University of Gdańsk)
John Selby (ICTQT, University of Gdańsk)
Akihito Soeda (National Institute of Informatics, Tokyo)
Matthew Wilson (University College London)
:: :: ::
Scientific Organizers
Hlér Kristjánsson (Perimeter Institute & IQC & Université de Montréal) (Chair)
V Vilasini (ETH Zürich & Inria, University Grenoble Alpes)
Robert Spekkens (Perimeter Institute)
Lucien Hardy (Perimeter Institute)
Elie Wolfe (Perimeter Institute)
Jacopo Surace (Perimeter Institute)
Marina Maciel Ansanelli (Perimeter Institute)
Yìlè Yīng (Perimeter Institute)
María Ciudad Alañón (Perimeter Institute)
Daniel Centeno Díaz (Perimeter Institute)
Khushi Gandhi (Perimeter Institute & University of Waterloo):: :: ::
Previous editions:
Causalworlds 2022: The interface between quantum and relativistic causality, foundations and practicalities
Organised at ETH Zürich in 2022. Website: https://causalworlds.ethz.ch/" -
Bangalore School on Statistical Physics XV
This advanced level school is the fifteenth in the series and will be organized jointly by the International Centre for Theoretical Sciences (ICTS) and the Raman Research Institute (RRI).This is a pedagogical school, aimed at bridging the gap between masters-level courses and topics in statistical physics at the frontline of current research. It is intended for Ph.D. students, post-doctoral fellows and interested faculty members at the college and university level. The following courses will be offered.1) Bruno Loureiro - Statistical Physics of Machine Learning (Online)2) Deepak Dhar - Introduction to Percolation Theory3) Massimiliano Esposito - Macroscopic Stochastic Thermodynamics4) Gregory Falkovich - Information Theory5) Prabha Mandayam - Bell's Inequalities and Quantum Entanglement6) P. K. Mohanty - Exact steady states: Matrix product ansatz and other methodsEligibility: Ph.D. students, postdoctoral fellows, and faculty members who are working in the related field.ICTS is committe...