Format results
-
Talk
-
-
-
-
Does relativistic causality constrain interference phenomena?
Markus Müller Institute for Quantum Optics and Quantum Information (IQOQI) - Vienna
-
-
-
-
-
-
Talk
-
-
Gravity Basics - 1
Veronika Hubeny University of California, Davis
-
QI Basics - 1
Patrick Hayden Stanford University
-
Entanglement - 1
Robert Spekkens Perimeter Institute for Theoretical Physics
-
Bell’s Theorem
Adrian Kent University of Cambridge
-
GR: Actions and Equations
David Kubiznak Charles University
-
A new perspective on holographic entanglement
Matthew Headrick Brandeis University
-
QI Basics - 2
John Watrous IBM (Canada)
-
-
Talk
-
Welcome and Opening Remarks
-
Marina Cortes Institute for Astrophysics and Space Sciences
-
Lee Smolin Perimeter Institute for Theoretical Physics
-
Neil Turok University of Edinburgh
-
-
-
The origin of arrows of time II
-
Sean Carroll California Institute of Technology (Caltech) - Division of Physics Mathematics & Astronomy
-
Marina Cortes Institute for Astrophysics and Space Sciences
-
Tim Koslowski Technical University of Applied Sciences Würzburg-Schweinfurt
-
-
The origin of arrows of time II cont.
-
Sean Carroll California Institute of Technology (Caltech) - Division of Physics Mathematics & Astronomy
-
Marina Cortes Institute for Astrophysics and Space Sciences
-
Tim Koslowski Technical University of Applied Sciences Würzburg-Schweinfurt
-
-
Testing time asymmetry in the early universe
-
Brian Keating University of California, San Diego
-
Andrew Liddle University of Lisbon
-
Richard Muller University of California, Berkeley
-
-
The fate of the big bang
-
Abhay Ashtekar Pennsylvania State University
-
Neil Turok University of Edinburgh
-
-
Time as Organization – Downward Caustation, Structure and Complexity I
Barbara Drossel Technische Universität Darmstadt
-
Time as Organization – Downward Caustation, Structure and Complexity II
-
Stuart Kauffman Santa Fe Institute
-
George Ellis University of Cape Town
-
-
-
Talk
-
-
Finally making sense of Quantum Mechanics, part 1
Yakir Aharonov Chapman University
-
How to count one photon and get a(n average) result of 1000...
Aephraim Steinberg University of Toronto
-
-
The Quantum Tip of the Two-Vector Iceberg
Avshalom Elitzur Israeli Institute for Advanced Research
-
The arrow of time for continuous quantum measurements
Andrew Jordan University of Rochester
-
Observation of Aharonov-Bohm effect with quantum tunneling
Yutaka Shikano Institute for Molecular Science, National Institutes of Natural Sciences
-
-
-
Talk
-
-
-
-
-
Protective Measurement and Ergodicity
Yakir Aharonov Chapman University
-
Sudden Sharp Forces and Nonlocal Interactions
Yakir Aharonov Chapman University
-
-
-
-
Talk
-
Gravity Dual of Quantum Information Metric
Tadashi Takayanagi Yukawa Institute for Theoretical Physics
-
A new perspective on holographic entanglement
Matthew Headrick Brandeis University
-
Universal holographic description of CFT entanglement entropy
Thomas Faulkner University of Illinois Urbana-Champaign
-
Geometric Constructs in AdS/CFT
Veronika Hubeny University of California, Davis
-
Do black holes create polyamory
Jonathan Oppenheim University College London
-
Tensor Network Renormalization and the MERA
Glen Evenbly Georgia Institute of Technology
-
Entanglement renormalization for quantum fields
Jutho Haegeman Ghent University
-
Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence
Fernando Pastawski California Institute of Technology
-
-
Lecture - Causal Inference, PHYS 777
Robert Spekkens Perimeter Institute for Theoretical Physics
-
Lecture - Quantum Information, PHYS 635
Alex May Perimeter Institute for Theoretical Physics
-
Fermions and Gaussianity ; Resources and Simulability
Andrew Projansky -
-
-
-
Formulating and Finding Higher-Order Interference
Formulating and Finding Higher-Order Interference
-
-
-
Concepts and Paradoxes in a Quantum Universe
Concepts and Paradoxes in a Quantum Universe
-
-
Quantum Information in Quantum Gravity II
Quantum Information in Quantum Gravity II -
Lecture - Causal Inference, PHYS 777
Robert Spekkens Perimeter Institute for Theoretical Physics
-
Lecture - Quantum Information, PHYS 635
Alex May Perimeter Institute for Theoretical Physics
-
Fermions and Gaussianity ; Resources and Simulability
Andrew ProjanskyMatchgates are a well studied class of quantum circuits tied to the time dynamics of Free Fermion Hamiltonians. It is important to note however that Matchgates specifically come from representing Free Fermions with the Jordan-Wigner encoding. When we represent our fermionic systems with other encodings besides Jordan-Wigner, we still are considering the time dynamics of Free Fermion solvable Hamiltonians, but we can introduce complexity in how we encode our fermionic information. This gives us a test ground for clarifying what physical properties make time dynamics hard to simulate, even when Hamiltonians can be exactly diagonalized. In this talk I will discuss the theory behind matchgates, fermionic encodings, and recent results in the simulability of Clifford/matchgate hybrid circuits (arxiv:2312.08447, arxiv:2410.10068). These results clarify resources for Free Fermions represented beyond the Jordan-Wigner encoding, as well as an overall perspective of what it means for a state to be Gaussian. -
-
-