Format results
-
-
Search for Lensed Gravitational Waves from LIGO/Virgo Binary Black Hole Mergers: Intriguing Candidates in O2
Liang Dai University of California, Berkeley
-
Towards Microscopic Models of Big Bang Cosmology
Mark Van Raamsdonk University of British Columbia
-
Composite fermi liquids and non-commutative field theory
Senthil Todadri Massachusetts Institute of Technology (MIT) - Department of Physics
-
-
-
Sample-efficient learning of quantum many-body hamiltonians
Anurag Anshu Harvard University
-
Can you make a magnet out of carbon?
David Goldhaber-Gordon Stanford University
-
Effective entropy of quantum fields coupled with gravity
Xiaoliang Qi Stanford University
-
-
Protected spin characters, link invariants, and q-nonabelianization
Fei Yan Rutgers University
-
The formation and growth of supermassive black holes
Anna-Christina Eilers Massachusetts Institute of Technology (MIT)
-
Topological Metals
Anton Burkov University of Waterloo
One of the major themes of the modern condensed matter physics is the study of materials with nontrivial electronic structure topology. Particularly significant progress in this field has happened within the last decade, due to the discovery of topologically nontrivial states of matter, that have a gap in their energy spectrum, namely Topological Insulators and Topological Superconductors. In this talk I will describe the most recent work, partly my own, extending the notions of the nontrivial electronic structure topology to gapless states of matter as well, namely to semimetals and even metals. I will discuss both the theoretical concepts, and the recent experimental work, realizing these novel states of condensed matter.
-
Search for Lensed Gravitational Waves from LIGO/Virgo Binary Black Hole Mergers: Intriguing Candidates in O2
Liang Dai University of California, Berkeley
Current and forthcoming observing runs at ground-based laser interferometry detectors are starting to uncover gravitational waves from binary black hole (BBH) mergers at cosmological distances, and a fraction of them are expected to be gravitationally lensed by intervening galaxy or cluster lenses with multiple images. Such strongly lensed events, if discovered, may offer a precious opportunity to localize BBH host galaxies and probe global and small-scale property of the lens mass profile. We investigate multiple BBH events showing parameter coincidence in the LIGO/Virgo O2 run, and search for additional sub-threshold signals that may be fainter lensed images. For the first time, we factor in the effect of the Morse phase shift in the analysis, and demonstrate how to measure the relative Morse phase via joint parameter inference. We confirm curiously high level of intrinsic and extrinsic parameter coincidence between GW170814 and GW170104, and uncover a third sub-threshold candidate lensed image, GWC170620, in a single-template search, which amounts to an estimated 10^-4 overall chance of statistical fluke. The measured relative Morse phases among the three events, although consistent with ray-optics lensing, point toward a complicated and unexpected image topology with a magnified image at a local maximum of the Fermat potential, which however casts doubt on the lensing hypothesis. The long time delays on the order of months necessarily require a massive lens of galaxy cluster scale. If a genuine set of multiple lensed images, we localize the source to ~ 16 deg^2 on the sky and suggest a range 0.4 < z < 0.7 for its redshift. Optical follow-up observations are encouraged to collect any additional information that may further shed light on the case.
-
Towards Microscopic Models of Big Bang Cosmology
Mark Van Raamsdonk University of British Columbia
In this talk, we review an approach to describing cosmological physics using ordinary AdS/CFT, where the cosmological physics is the effective description of an end-of-the-world brane which cuts off the second asymptotic region of a two-sided black hole. The worldvolume geometry of the brane is an FRW big-bang/big-crunch spacetime. Infavorable circumstances, the brane acts as a Randall-Sundrum Planck brane so that gravity localizes. We describe a microscopic construction for such an end-of-the-world brane with localized gravity in AdS/CFT, starting from N=4 SYM theory. We suggest specific microscopic states of N=4 SYM theory that may encode the physics in a four-dimensional cosmological spacetime.
-
Composite fermi liquids and non-commutative field theory
Senthil Todadri Massachusetts Institute of Technology (MIT) - Department of Physics
The interplay between topology, strong correlations, and kinetic energy presents a new challenge for the theory of quantum matter. In this talk I will describe some recent progress on understanding a simple class of problems where these effects can all be analytically handled. I will first present results on a microscopic lowest Landau theory of the composite fermi liquid state of bosons at filling 1. Building on work from the 1990s I will derive an effective field theory for this system that takes the form of a non-commutative field theory. I will show that an approximate mapping of this theory to a commutative field theory yield the familiar Halperin-Lee-Read action but with parameters correctly described by the interaction strength. I will describe the effect of a finite bandwidth introduced to the Landau Level and describe the evolution between the composite Fermi liquid and a boson superfluid. Time permitting, I will describe some generalizations that will include the evolution between a Quantum Anomalous Hall state and a Landau Fermi liquid that may be experimentally accessible in moire graphene systems.
-
Quantum Raychaudhuri Equation: Implications for spacetime singularities and the quantum origin of Lambda
Saurya Das University of Lethbridge
The Raychaudhuri equation predicts the convergence of geodesics and gives rise to the singularity theorems. The quantum Raychaudhuri equation (QRE), on the other hand, shows that quantal trajectories, the quantum equivalent of the geodesics, do not converge and are not associated with any singularity theorems. Furthermore, the QRE gives rise to the quantum corrected Friedmann equation. The quantum correction is dependent on the wavefunction of the perfect fluid whose pressure and density enter the Friedmann equation. We show that for a suitable choice of the wavefunction this term can be interpreted as a small positive cosmological constant.
-
Diophantine approximation as Cosmic Censor for AdS black holes
Christoph Kehle ETH Zurich
The statement that general relativity is deterministic finds its mathematical formulation in the celebrated ‘Strong Cosmic Censorship Conjecture’ due to Roger Penrose. I will present my recent results on this conjecture in the case of negative cosmological constant and in the context of black holes. It turns out that this is intimately tied to Diophantine properties of a suitable ratio of mass and angular momentum of the black hole.
-
Sample-efficient learning of quantum many-body hamiltonians
Anurag Anshu Harvard University
We study the problem of learning the Hamiltonian of a quantum many-body system given samples from its Gibbs (thermal) state. The classical analog of this problem, known as learning graphical models or Boltzmann machines, is a well-studied question in machine learning and statistics. In this work, we give the first sample-efficient algorithm for the quantum Hamiltonian learning problem. In particular, we prove that polynomially many samples in the number of particles (qudits) are necessary and sufficient for learning the parameters of a spatially local Hamiltonian in l_2-norm.
Our main contribution is in establishing the strong convexity of the log-partition function of quantum many-body systems, which along with the maximum entropy estimation yields our sample-efficient algorithm. Classically, the strong convexity for partition functions follows from the Markov property of Gibbs distributions. This is, however, known to be violated in its exact form in the quantum case. We introduce several new ideas to obtain an unconditional result that avoids relying on the Markov property of quantum systems, at the cost of a slightly weaker bound. In particular, we prove a lower bound on the variance of quasi-local operators with respect to the Gibbs state, which might be of independent interest.
Joint work with Srinivasan Arunachalam, Tomotaka Kuwahara, Mehdi Soleimanifar -
Can you make a magnet out of carbon?
David Goldhaber-Gordon Stanford University
In most materials, electrons fill bands, starting from the lowest kinetic energy states. The Fermi level is the boundary between filled states below and empty states above. This is the basis for our very successful understanding of how metals and semiconductors work. But what if all the electrons within a band had the same kinetic energy (this situation is called a "flat band")? Then electrons could arrange themselves so as to minimize their Coulomb repulsion, giving rise to a wide variety of possible states including superconductors and magnets. Until recently, flat bands were achieved only by applying large magnetic fields perpendicular to a 2D electron system; in this context they are known as Landau levels. Fractional quantum hall effects result from Coulomb-driven electron arrangement within a Landau level. Recently, Pablo Jarillo-Herrero of MIT and coworkers demonstrated flat minibands in graphene-based superlattices, discovering correlated insulators and superconductors at different fillings of these minibands. We have now discovered dramatic magnetic states in such superlattice systems. Specifically, in magic-angle twisted bilayer graphene which is also aligned with a hexagonal boron nitride (hBN) cladding layer, we observe a giant anomalous Hall effect as large as 10.4 kΩ, and signs of chiral edge states. This all occurs at zero magnetic field, in a narrow density range around an apparent insulating state at 3 electrons (1 hole) per moiré cell in the conduction miniband [1]. Remarkably, the magnetization of the sample can be reversed by applying a small DC current. Although the anomalous Hall resistance is not quantized, and dissipation is significant, we suggest that the system is essentially a "Chern insulator", a type of topological insulator similar to an integer quantum Hall state. In a quite different superlattice system, ABC-trilayer graphene aligned with hBN, again near 3 electrons (1 hole) per moiré cell a Chern insulator emerges [2]. This time the flat band is a valence miniband, and a magnetic field of order 100 mT is needed to quantize the anomalous hall signal. This trilayer system can be tuned in-situ to display superconductivity instead of magnetism [3]. We will discuss possible magnetic states, complementary probes to examine which state actually emerges as the ground state in each system, and what one might do with such states.
[1] A.L. Sharpe et al., “Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene”, Science 365, 6453 (2019).
[2] G. Chen et al., “Tunable Correlated Chern Insulator and Ferromagnetism in Trilayer Graphene/Boron Nitride Moire Superlattice”, Nature 579, 56 (2020)
[3] G. Chen et al., “Signatures of tunable superconductivity in a trilayer graphene moiré superlattice”, Nature 572, 215 (2019). -
Effective entropy of quantum fields coupled with gravity
Xiaoliang Qi Stanford University
Entanglement entropy quantifies the amount of uncertainty of a quantum state. For quantum fields in curved space, entanglement entropy of the quantum field theory degrees of freedom is well-defined for a fixed background geometry. In this work, we propose a generalization of the quantum field theory entanglement entropy by including dynamical gravity. The generalized quantity named effective entropy, and its Renyi entropy generalizations, are defined by analytic continuation of a gravitational path integral on replica geometry with a co-dimension-2 brane at the boundary of region we are studying. We discuss different approaches to define the region in a gauge invariant way, and show that the effective entropy satisfies the quantum extremal surface formula. When the quantum fields carry a significant amount of entanglement, the quantum extremal surface can have a topology transition, after which an entanglement island region appears. Our result generalizes the Hubeny-Rangamani-Takayanagi formula of holographic entropy (with quantum corrections) to general geometries without asymptotic AdS boundary, and provides a more solid framework for addressing problems such as the Page curve of evaporating black holes in asymptotic flat spacetime. We apply the formula to two example systems, a closed two-dimensional universe and a four-dimensional maximally extended Schwarzchild black hole. We discuss the analog of the effective entropy in random tensor network models, which provides more concrete understanding of quantum information properties in general dynamical geometries. By introducing ancilla systems, we show how quantum information in the entanglement island can be reconstructed in a state-dependent and observer-dependent map. We study the closed universe (without spatial boundary) case and discuss how it is related to open universe.
-
Halo gas thermodynamics from the cosmic microwave background: implications for large-scale structure and galaxy formation
Emmanuel Schann Princeton University
Understanding galaxy formation is an outstanding problem in Astrophysics. The feedback processes that drive it, exploding stars and accretion onto supermassive black holes, are poorly understood. This results in an order unity uncertainty in the distribution of the gas inside halos, the ``missing baryon problem''. Because baryons are 15% of the total mass in the universe, this baryonic uncertainty is the largest theoretical systematics for percent precision weak lensing surveys like DES, HSC, Rubin Observatory, Roman Observatory and Euclid.
By measuring the kinematic and thermal Sunyaev-Zel'dovich effects (kSZ and tSZ), high resolution and high sensitivity CMB experiments can solve these issues by measuring the gas thermodynamics in galaxy groups and clusters, at high redshift and out to the outskirts of the halo. I will present joint tSZ, kSZ and dust measurement of BOSS (CMASS) galaxy groups, for which clustering and lensing data is also available. Using data from the Atacama Cosmology Telescope (ACT), we produced the highest significance kSZ measurement to date. This measurement shows with high statistical confidence that the gas is more spread out than the dark matter. It informs the modeling of the CMASS galaxy-galaxy lensing data, and shows that the small-scale ``lensing is low'' tension is not entirely caused by baryonic effects. Finally, comparing the observed kSZ and tSZ to hydrodynamical simulations reveals insight about the modalities of feedback. -
Protected spin characters, link invariants, and q-nonabelianization
Fei Yan Rutgers University
In this talk I will describe a new link "invariant" (with certain wall-crossing properties) for links L in a three-manifold M, where M takes the form of a surface times the real line. This link "invariant" is constructed via a map, called the q-nonabelianization map, from the
gl(N) skein algebra of M to the gl(1) skein algebra of a covering three-manifold M'. In the special case of M=R^3, this map computes well-known link invariants in a new way. As a physical application, the q-nonabelianization map computes protected spin character counting BPS ground states with spin for line defects in 4d N=2 theories of class-S. I will also mention possible extension to more general three-manifolds, as well as further physical applications to class-S theories. This talk is based on joint work with Andrew Neitzke, and ongoing work with Gregory Moore and Andrew Neitzke. -
The formation and growth of supermassive black holes
Anna-Christina Eilers Massachusetts Institute of Technology (MIT)
Quasars are the most luminous objects in the universe powered by accretion onto supermassive black holes (SMBHs). They can be observed at the earliest cosmic epochs, providing unique insights into the early phases of black hole, structure, and galaxy formation. Observations of these quasars demonstrate that they host SMBHs at their center, already less than ~1 Gyr after the Big Bang. It has been argued that in order to grow these SMBHs in such short amounts of cosmic time, they need to accrete matter over timescales comparable to the age of the universe, and thus the lifetime of quasars - the integrated time that galaxies shine as active quasars - is expected to be of order ~10^9 yr at a redshift of z~6, even if they accrete continuously at the theoretical maximum limit.
I will present a new method to obtain constraints on the lifetime of high-redshift quasars, based on measurements of the sizes of ionized regions around quasars, known as proximity zones. The sizes of these proximity zones are sensitive to the lifetime of the quasars, because the intergalactic gas has a finite response time to the quasars’ radiation. Applying this method to quasar spectra at z>6, we discover an unexpected population of very young quasars, indicating lifetimes of only ~10,000 years, several orders of magnitude shorter than expected. I will discuss the consequences of such short lifetimes on the quasars' ionizing power, their black hole mass accretion rates, and highlight tensions with current theoretical models for black hole formation. Furthermore, I will present several modifications to the current SMBH formation paradigm that might explain our findings and show how we aim to disentangle the various scenarios by means of future observations with the upcoming James Webb Space Telescope, in order to shed new light onto the formation and growth of the first SMBHs in the universe.