A theory governing the metric and matter fields in spacetime is {\it
locally causal} if the probability distribution for the fields in any region is determined solely by physical data in its past, i.e. it is independent of events at space-like separated points. This is the case according to general relativity, and it is natural to hypothesise that it should also hold true in any theory in which the fundamental description of space-time is classical and geometric --- for instance, some hypothetical theory which stochastically couples a classical spacetime geometry to a quantum field theory of matter. On the other hand, a quantum theory of gravity should allow the creation of spacetimes which macroscopically violate local causality.
I describe a feasible experiment to test the local causality of spacetime, and hence to test whether gravity is better described, in this respect, by general relativity or by quantum theory. The experiment will either identify a definite limit to the domain of validity of quantum theory or else produce significant evidence for the hypothesis that gravity is described by a quantum theory.
Abner Shimony is well-known for, among other contributions, his seminal work on Bell inequalities, turning a philosophical question into an experimental one. In my presentation I like to remind us how this experimental field is nowadays feeding into applied science. This is happening both in terms of the involved technologies and in the conceptual tools.
I will report my efforts to describe elementary Quantum behaviours, specifically single-particle interference and two-particle entanglement, in an accelerating frame.
Entanglement swapping is such a powerful technique for dealing with EPR problems, that it can handle inefficient counters and Bell Theorems without inequalities, even for two particles. We will examine some of the results and pitfalls.
An experimental realization of our spin-1/2 particle version of the Einstein-Podolsky-Rosen (EPR) experiment will be briefly reviewed. In the proposed experiment, two 199Hg atoms in the ground 1S0 electronic state, each with nuclear spin I=1/2, are generated in an entangled state with total nuclear spin zero. Such a state can be obtained by dissociation of a 199Hg2 molecule (dimer) using a spectroscopically selective stimulated Raman process. From symmetry considerations, the nuclear spin singlet state is guaranteed if the initial 199Hg2 molecule is in a rotational state with an even quantum number. Consequently, a thorough investigation and analysis of the rotational structure of the 199Hg2 molecule is required; results of this analysis will be presented.
Feynman was probably correct to say that the only mystery of quantum mechanics is the principle of superposition. Although we may never know which slit a photon has been passing in a Youngs double-slit experiment, we do have a corresponding classical concept in classical electromagnetic theory: the superposition of electromagnetic fields at a local space-time point is a solution of the Maxwell equations. In the case of joint photo-detection measurement of two photons, however, the superposition involves the addition of two-photon amplitudes, different yet indistinguishable alternatives resulting in a click-click joint photo-detection event. There is no counterpart of such concept in classical electromagnetic theory and the superposition may happen at distance. It is the two-photon superposition responsible for the mysteries of EPR by means of reality and causality. This talk will analyze the physics of based on several recent experiments.
According to a widely accepted view, the emergence of macroscopic behavior is related to the loss of quantum mechanical coherence. Opinions on the possible cause of this loss diverge. In the present talk it will be shown how a small, assessable amount of indeterminacy in the structure of space-time may lead to the emergence of macroscopic behavior, in agreement with empirical evidence.
After giving an introduction to the Continuous Spontaneous Localization
(CSL) theory of dynamical wave function collapse, I shall discuss 10 problems of dynamical collapse models, 5 of which were resolved by CSL's advent, and 5 of which have been subsequently attacked with varying success.