The field of artificial intelligence (AI) has experienced major developments over the last decade. Within AI, of particular interest is the paradigm of reinforcement learning (RL), where autonomous agents learn to accomplish a given task via feedback exchange with the world they are placed in, called an environment. Thanks to impressive advances in quantum technologies, the idea of using quantum physics to boost the performance of RL agents has been recently drawing the attention of many scientists. In my talk I will focus on the bridge between RL and quantum mechanics, and show how RL has proven amenable to quantum enhancements. I will provide an overview of the most recent results — for example, the development of agents deciding faster on their next move [1]— and I will then focus on how the learning time of an agent can be reduced using quantum physics. I will show that such a reduction can be achieved and quantified only if the agent and the environment can also interact quantumly, that is, if they can communicate via a quantum channel [2]. This idea has been implemented on a quantum platform that makes use of single photons as information carriers. The achieved speed-up in the agent’s learning time, compared to the fully classical picture, confirms the potential of quantum technologies for future RL applications.
[1] Sriarunothai, T. et al. Quantum Science and Technology 4, 015014 (2018).
[2] Saggio, V. et al. Nature 591, 229–233 (2021).
Dense hydrogen, the most abundant matter in the visible universe, exhibits a range of fascinating physical phenomena such as metallization and high-temperature superconductivity, with significant implications for planetary physics and nuclear fusion research. Accurate prediction of the equations of state and phase diagram of dense hydrogen has long been a challenge for computational methods. In this talk, we present a deep generative model-based variational free energy approach to tackle the problem of dense hydrogen, overcoming the limitations of traditional computational methods. Our approach employs a normalizing flow network to model the proton Boltzmann distribution and a fermionic neural network to model the electron wavefunction at given proton positions. The joint optimization of these two neural networks leads to a comparable variational free energy to previous coupled electron-ion Monte Carlo calculations. Our results suggest that hydrogen in planetary conditions is even denser than previously estimated using Monte Carlo and ab initio molecular dynamics methods. Having reliable computation of the equation of state for dense hydrogen, and in particular, direct access to its entropy and free energy, opens new opportunities in planetary modeling and high-pressure physics research.
Black holes are fascinating spacetime configurations predicted by general relativity. When quantum mechanics is taken into account, blackholes are found to emit thermal radiation, called "Hawking radiation". Recently an interesting area formula for the quantum entropy of blackholes was derived. This also leads to a surprising new way to compute the entropy of Hawking radiation. This result indicates that the blackhole formation and evaporation is consistent with standard quantum mechanical laws.