Format results
-
Talk
-
Direct experimental reconstruction of the Bloch sphere
-
Michael Mazurek Institute for Quantum Computing (IQC)
-
Matthew Pusey University of York
-
-
Single-photon test of Hyper-Complex Quantum Theories
Lorenzo Procopio University of Vienna
-
-
-
Experimental implementation of quantum-coherent mixtures of causal relations
Robert Spekkens Perimeter Institute for Theoretical Physics
-
-
Talk
-
-
-
-
Does relativistic causality constrain interference phenomena?
Markus Müller Institute for Quantum Optics and Quantum Information (IQOQI) - Vienna
-
-
-
-
-
-
Talk
-
-
Gravity Basics - 1
Veronika Hubeny University of California, Davis
-
QI Basics - 1
Patrick Hayden Stanford University
-
Entanglement - 1
Robert Spekkens Perimeter Institute for Theoretical Physics
-
A new perspective on holographic entanglement
Matthew Headrick Brandeis University
-
Bell’s Theorem
Adrian Kent University of Cambridge
-
GR: Actions and Equations
David Kubiznak Charles University
-
QI Basics - 2
John Watrous IBM (Canada)
-
-
Talk
-
Welcome and Opening Remarks
-
Marina Cortes Institute for Astrophysics and Space Sciences
-
Lee Smolin Perimeter Institute for Theoretical Physics
-
Neil Turok University of Edinburgh
-
-
-
The origin of arrows of time II
-
Sean Carroll California Institute of Technology (Caltech) - Division of Physics Mathematics & Astronomy
-
Marina Cortes Institute for Astrophysics and Space Sciences
-
Tim Koslowski Technical University of Applied Sciences Würzburg-Schweinfurt
-
-
The origin of arrows of time II cont.
-
Sean Carroll California Institute of Technology (Caltech) - Division of Physics Mathematics & Astronomy
-
Marina Cortes Institute for Astrophysics and Space Sciences
-
Tim Koslowski Technical University of Applied Sciences Würzburg-Schweinfurt
-
-
Testing time asymmetry in the early universe
-
Brian Keating University of California, San Diego
-
Andrew Liddle University of Lisbon
-
Richard Muller University of California, Berkeley
-
-
The fate of the big bang
-
Abhay Ashtekar Pennsylvania State University
-
Neil Turok University of Edinburgh
-
-
Time as Organization – Downward Caustation, Structure and Complexity I
Barbara Drossel Technische Universität Darmstadt
-
Time as Organization – Downward Caustation, Structure and Complexity II
-
Stuart Kauffman Santa Fe Institute
-
George Ellis University of Cape Town
-
-
-
Talk
-
-
Finally making sense of Quantum Mechanics, part 1
Yakir Aharonov Chapman University
-
How to count one photon and get a(n average) result of 1000...
Aephraim Steinberg University of Toronto
-
-
The Quantum Tip of the Two-Vector Iceberg
Avshalom Elitzur Chapman University
-
The arrow of time for continuous quantum measurements
Andrew Jordan University of Rochester
-
Observation of Aharonov-Bohm effect with quantum tunneling
Yutaka Shikano Institute for Molecular Science, National Institutes of Natural Sciences
-
-
-
Talk
-
-
-
-
-
Protective Measurement and Ergodicity
Yakir Aharonov Chapman University
-
Sudden Sharp Forces and Nonlocal Interactions
Yakir Aharonov Chapman University
-
-
-
-
Talk
-
Gravity Dual of Quantum Information Metric
Tadashi Takayanagi Yukawa Institute for Theoretical Physics
-
A new perspective on holographic entanglement
Matthew Headrick Brandeis University
-
Universal holographic description of CFT entanglement entropy
Thomas Faulkner University of Illinois Urbana-Champaign
-
Geometric Constructs in AdS/CFT
Veronika Hubeny University of California, Davis
-
Do black holes create polyamory
Jonathan Oppenheim University College London
-
Tensor Network Renormalization and the MERA
Glen Evenbly Georgia Institute of Technology
-
Entanglement renormalization for quantum fields
Jutho Haegeman Ghent University
-
Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence
Fernando Pastawski California Institute of Technology
-
-
-
A Criterion for Post-Selected Quantum Advantage
Matthew Fox University of Colorado Boulder
-
Universal Microscopic Descriptions for Anomalies and Long-Range Entanglement
Ryohei Kobayashi Institute for Advanced Study (IAS)
-
Lecture - Causal Inference, PHYS 777
Robert Spekkens Perimeter Institute for Theoretical Physics
-
Lecture - Causal Inference, PHYS 777
Robert Spekkens Perimeter Institute for Theoretical Physics
-
Experimental Quantum Foundations
Experimental Quantum Foundations -
Formulating and Finding Higher-Order Interference
Formulating and Finding Higher-Order Interference
-
-
-
Concepts and Paradoxes in a Quantum Universe
Concepts and Paradoxes in a Quantum Universe
-
-
Quantum Information in Quantum Gravity II
Quantum Information in Quantum Gravity II -
Learning and testing quantum states of fermionic systems
Abstract: The experimental realization of increasingly complex quantum states in quantum devices underscores the pressing need for new methods of state learning and verification. Among the various classes of quantum states, fermionic systems hold particular significance due to their crucial roles in physics. Despite their importance, research on learning quantum states of fermionic systems remains surprisingly limited. In our work, we aim to present a comprehensive rigorous study on learning and testing states of fermionic systems. We begin by analyzing arguably the simplest important class of fermionic states—free-fermionic states—and subsequently extend our analysis to more complex fermionic states. We meticulously delineate scenarios in which efficient algorithms are feasible, providing experimentally practical algorithms for these cases, while also identifying situations where any algorithm for solving these problems must be inherently inefficient. At the same time, we present novel fundamental results of independent interest on fermionic systems, with additional applications beyond learning and characterizing quantum devices, such as many-body physics, resource theory of non-Gaussianity, and circuit compilation strategies. (Talk based on https://arxiv.org/pdf/2409.17953 , https://arxiv.org/pdf/2402.18665) -
A Criterion for Post-Selected Quantum Advantage
Matthew Fox University of Colorado Boulder
Assuming the polynomial hierarchy is infinite, we prove a sufficient condition for determining if uniform and polynomial size quantum circuits over a non-universal gate set are not efficiently classically simulable in the weak multiplicative sense. Our criterion exploits the fact that subgroups of SL(2; C) are essentially either discrete or dense in SL(2; C). Using our criterion, we give a new proof that both instantaneous quantum polynomial (IQP) circuits and conjugated Clifford circuits (CCCs) afford a quantum advantage. We also prove that both commuting CCCs and CCCs over various fragments of the Clifford group afford a quantum advantage, which settles two questions of Bouland, Fitzsimons, and Koh. Our results imply that circuits made of just U \otimes U-conjugated CZ gates afford a quantum advantage for almost all single-qubit unitaries U.
-
Universal Microscopic Descriptions for Anomalies and Long-Range Entanglement
Ryohei Kobayashi Institute for Advanced Study (IAS)
I will present a unified framework for understanding the statistics and anomalies of excitations—ranging from particles to higher-dimensional objects—in quantum lattice systems. We introduce a general method to compute the quantized statistics of Abelian excitations in arbitrary dimensions via Berry phases of locality-preserving symmetry operations, uncovering novel statistics for membrane excitations. These statistics correspond to quantum anomalies of generalized global symmetries and imply obstructions to gauging, enforcing long-range entanglement. In particular, we show that anomalous higher-form symmetries enforce intrinsic long-range entanglement, meaning that fidelity with any SRE states must exhibit exponential decay, unlike ordinary (0-form) symmetry anomalies. As an application, we identify a new example of (3+1)D mixed-state topological order with fermionic loop excitations, characterized by a breakdown of remote detectability linked to higher-form symmetry anomalies.
-
Lecture - Causal Inference, PHYS 777
Robert Spekkens Perimeter Institute for Theoretical Physics
-
Lecture - Causal Inference, PHYS 777
Robert Spekkens Perimeter Institute for Theoretical Physics