Weak topological insulators have an even number of Dirac cones in their surface spectrum and are thought to be unstable to disorder, which leads to an insulating surface. Here we argue that the presence of disorder alone will not localize the surface states, rather, the presence of a time-reversal symmetric mass term is required for localization. Through numerical simulations, we show that in the absence of the mass term the surface always flow to a stable metallic phase and the conductivity obeys a one-parameter scaling relation, just as in the case of a strong topological insulator surface. With the inclusion of the mass, the transport properties of the surface of a weak topological insulator follow a two-parameter scaling form.
We report on our recent progress to investigate materials classes exhibiting d+id superconductivity, where topologically nontrivial pairing phases can emerge. Specifically, motivated by recent experimental progress, we show that graphene doped to the van Hove regime can give rise to a plethora of interesting ordering instabilities such as spin density wave and superconductivity. As a function of system parameters such as doping and range of Coulomb interaction, we explain which instability is favored by the system, and analyze the effect of long-range interactions on superconductivity giving rise to a competition between singlet d+id and triplet f wave. We also outline our work in progress for other materials classes which we believe are promising to stabilize such interesting topological superconducting states of matter.
It has been well-known that topological phenomena with fractional excitations, i.e., the fractional quantum Hall effect (FQHE) will emerge when electrons move in Landau levels. In this talk, I will show FQHE can emergy even in the absence of Landau levels in interacting fermion models and boson models. The non-interacting part of our Hamiltonian contains topologically nontrivial flat band.