Format results
-
-
(Towards) the end of the cosmological constant problem!
Niayesh Afshordi University of Waterloo
-
The Multiverse Of String Theory, The Measure Problem, And The Cosmological Constant
Raphael Bousso University of California, Berkeley
-
Exploring extra dimensions with cosmic acceleration
Daniel Wesley University of Pennsylvania
-
-
-
-
Three thoughts about black holes and cosmology
Latham Boyle University of Edinburgh
-
The Effectiveness of Group Theory in Quantum Mechanics
Chris Smeenk Western University
PIRSA:09030045 -
-
What is the objective face of a die?
Gabriel Catren Centre de Recherche en Epistémologie Appliquée
-
Revisiting the scalar sector in Warped Extra Dimensions
Manuel Toharia University of Maryland, College Park
-
Acceleration in our past, present, and future
Leonardo Senatore ETH Zurich
The great advances in observational cosmology in the last few years have delivered us an unprecedented amount of new data. They begin to indicate with confidence that in the past our universe underwent a phase of acceleration, called inflation, and that it is currently undergoing a similar phase, usually thought of as a consequence of a cosmological constant. I will show how inflation can be probed, using to this purpose a very general effective field theory description. In particular, I will concentrate on the new and powerful signal of the non-gaussianity of the primordial density perturbations, explaining its theoretical motivation, the techniques to look for it in the data, and the current constraints from the WMAP experiment. This signature is very important not only to identify the precise mechanism that drove inflation, but also to shed light on possible alternatives, such as the recently proposed bouncing cosmology. I will describe how these alternative theories can be consistently formulated and be predictive, and how similar theories may have interesting implications for the current acceleration of the universe. If inflation happened in our past, it might actually have been eternal. The presence of such a phase offers a new way to address the problem of the cosmological constant and of the current acceleration of the universe. This will lead us to explain in precise terms what eternal inflation is. -
(Towards) the end of the cosmological constant problem!
Niayesh Afshordi University of Waterloo
The cosmological constant problem is arguably the deepest gap in our understanding of modern physics. The discovery of cosmic acceleration in the past decade and its surprising coincidence with cosmic structure formation has added an extra layer of complexity to the problem. I will describe how revisiting/revising some standard assumptions in the theory of gravity can decouple the quantum vacuum from geometry, which can potentially solve the cosmological constant problem. I will then argue that a possible fascinating outcome of such a theory is to relate black hole formation to cosmic acceleration, providing a possible solution to the cosmic coincidence. A diverse range of experimental/observational probes over the next decade will tell us whether we are close to the end of this century-old mystery, which in turn could shed light on the nature of quantum gravity and black holes. -
The Multiverse Of String Theory, The Measure Problem, And The Cosmological Constant
Raphael Bousso University of California, Berkeley
The vacuum landscape of string theory can solve the cosmological constant problem, explaining why the energy of empty space is observed to be at least 60 orders of magnitude smaller than several known contributions to it. It leads to a 'multiverse' in which every type of vacuum is produced infinitely many times, and of which we have observed but a tiny fraction. This conceptual revolution has raised tremendous challenges in particle physics and cosmology. To understand the low-energy physics we observe, and to test the theory, we will need novel statistical tools and effective theories. We must also solve a long-standing fundamental problem in cosmology: how to define probabilities in an infinite universe where every possible outcome, no matter how unlikely, will be realized infinitely many times. This 'measure problem' is inextricably tied to the quantitative prediction of the cosmological constant. -
Exploring extra dimensions with cosmic acceleration
Daniel Wesley University of Pennsylvania
The standard cosmological model features two periods of accelerated expansion: an inflationary epoch at early times, and a dark energy dominated epoch at late times. These periods of accelerated expansion can lead to surprisingly strong constraints on models with extra dimensions. I will describe new mathematical results which enable one to reconstruct features of a higher-dimensional theory based on the behaviour of the accelerating four-dimensional cosmology. When applied to inflation, these results pose several interesting questions for the construction of concrete models. When applied to dark energy, they provide a new technique to combine measurements of dark energy parameters and constraints on variation of Newton's constant. This technique can transform near-future dark energy surveys into become powerful probes of extra dimensional physics. -
Gravitational Lensing
Scott Dodelson Carnegie Mellon University
Weak lensing has emerged as a powerful probe of fundamental physics such as dark energy and dark matter. After briefly reviewing the standard argument for the power of lensing, I present a variety of surprises: some quantities that are supposedly simple measures of cosmic shear are actually polluted by other effects and some quantities apparently unrelated to lensing are contaminated by lensing. These effects may lead to opportunities to strengthen the constraints lensing will place on dark energy. -
Dynamics in the Dark
If Dark Energy is dynamical, it would indicate the existence of new physics beyond the standard model coupled to gravity. I will argue that the best motivated models of this new physics are all tied to whatever resolves the cosmological constant problem, and discuss the cosmological implications of several proposals that have been put forward in this vein. -
Chaotic D-Term Inflation
Teruhiko Kawano University of Tokyo
A simple model for chaotic inflation in supergravity is proposed. The model is N = 1 supersymmetric massive U(1)gauge theory via the Stuckelberg superfield and gives rise to D-term inflation with a quadratic term of inflaton in the potential. The Fayet-Iliopoulos field plays a role of the inflaton. It is also discussed to give rise to successful reheating and leptogenesis through the inflaton decay. -
Three thoughts about black holes and cosmology
Latham Boyle University of Edinburgh
I will present three ideas about black holes and cosmology. First, I will discuss a way of understanding the simple patterns which emerge from the notoriously thorny numerical simulations of binary black hole merger, and some of the directions where this understanding may lead. Second, I will suggest a sequence of practical bootstrap tests designed to give sharp observational confirmation of the essential idea underlying the inflationary paradigm: that the universe underwent a period of accelerated expansion followed by a long period of decelerated expansion. Third, I will investigate a way that one might try to detect the strong bending of light rays in the vicinity of a black hole. -
The Effectiveness of Group Theory in Quantum Mechanics
Chris Smeenk Western University
PIRSA:09030045Eugene Wigner and Hermann Weyl led the way in applying the theory of group representations to the newly formulated theory of quantum mechanics starting in 1927. My talk will focus, first, on two aspects of this early work. Physicists had long exploited symmetries as a way of simplifying problems within classical physics. Wigner recognized that the theory of group representations would similarly have enormous payoff in quantum mechanics, allowing him to solve problems in atomic spectroscopy ``almost without calculation.'' Here I will describe the novel aspects of symmetry in QM that Wigner clarified in the series of papers leading up to his 1931 textbook (Wigner's theorem, projective representations, etc.). The second aspect is less well-known: Weyl (1927) argued that group theory could also be used to address foundational questions in quantum mechanics, leading to a reformulation of the classical commutation relations and a proposal for quantization. Weyl's program had much less immediate impact, although it led to the Stone-von Neumann theorem and to Mackey's imprimitivity theorem. As a final historical point, I argue that in this early work the theory of group representations was optional (as emphasized by Slater and others) in a sense that it was not in particle physics in the 60s. The closing section of the talk turns to philosophical morals that have been drawn from this historical episode, in particular claims regarding ontic structural realism (French, Ladyman) and the group-theoretic constitution of objects (Castellani). -
Quantum graphity: a model of emergent locality in quantum gravity
Quantum graphity is a background independent condensed matter model for emergent locality, spatial geometry and matter in quantum gravity. The states of the system are given by bosonic degrees of freedom on a dynamical graph on N vertices. At high energy, the graph is the complete graph on N vertices and the physics is invariant under the full symmetric group acting on the vertices and highly non-local. The ground state dynamically breaks the permutation symmetry to translations and rotations. In this phase the system is ordered, low-dimensional and local. The model gives rise to an emergent U(1) gauge theory in the ground state by the string-net condensation mechanism of Levin and Wen. In addition, in such a model, observable effects of emergent locality such as its imprint on the CMB can be studied. Finding the right dynamics for the desired ground state is ongoing work and I will review some of the basic results with an emphasis on the use of methods from quantum information theory such as topological order and the use of the Lieb-Robinson bounds to find the speed of light in the system. -
What is the objective face of a die?
Gabriel Catren Centre de Recherche en Epistémologie Appliquée
Quantum foundations in the light of gauge theories We will present the conjecture according to which the fact that q and p cannot be both ``observables'' of the same quantum system indicates that there is a remnant universal symmetry acting on classical states. In order to unpack this claim we will generalize to unconstrained systems the gauge correspondence between properties defined by first-class constraints and gauge symmetries generated by these constraints. As we shall see, this means that the uncertainty principle might be encoded in the very definition of the canonical variables q and p. According to the ontology of quantum objects that stems from this analysis, the quantum-mechanical description of physical objects is complete. -
Revisiting the scalar sector in Warped Extra Dimensions
Manuel Toharia University of Maryland, College Park
I will revisit the phenomenology of the radion graviscalar in warped extra dimensions. This particle could be the lightest 'new physics' state to be discovered at the LHC in this type of models. Its phenomenology is very similar to the Standard Model (SM) Higgs, another potentially light scalar particle with which it could actually mix. When SM fields are moved from the boundary to the bulk of the extra dimension, new interesting effects appear in the scalar sector of the model. With a little bit of Higgs-radion mixing, it is possible to enhance importantly some decay channels of the mostly-radion scalar. Moreover, both the Higgs and the radion can now typically mediate Flavor Changing Neutral Currents at tree level. These will impose bounds on the flavor structure of the model, but also allow for interesting probes in current and future collider experiments.