One version of the membrane paradigm states that as far as outside observers are concerned, black holes can be replaced by a dissipative membrane with simple physical properties located at the stretched horizon. We demonstrate that such a membrane paradigm is incomplete in several aspects. We argue that it generically fails to capture the massive quasinormal modes, unless we replace the stretched horizon by the exact event horizon, and illustrate this with a scalar field in a BTZ black hole background. We also consider as a concrete example linearized metric perturbations of a five-dimensional AdS-Schwarzschild black brane and show that a spurious excitation appears in the long-wavelength response that is only removed from the spectrum when the membrane paradigm is replaced by ingoing boundary conditions at the event horizon. We interpret this excitation in terms of an additional Goldstone boson that appears due to symmetry breaking by the classical solution ending on the stretched horizon rather than the event horizon.
Quantum Adiabatic Optimization proposes to solve discrete optimization problems by mapping them onto quantum spin systems in such a way that the optimal solution corresponds to the ground state of the quantum system. The standard method of preparing these ground states is using the adiabatic theorem, which tells us that quantum systems tend to remain in the ground state of a time-dependent Hamiltonian which transforms sufficiently slowly. In this talk I'll show that alternative strategies using non-adiabatic effects can in some cases be dramatically faster for instances which are hard for the traditional adiabatic method.
I will also discuss Simulated Quantum Annealing (SQA), which is a classical simulation of adiabatic optimization at non-zero temperature based on Path-Integral Quantum Monte Carlo. SQA is widely used in practice to study adiabatic optimization, but relatively little is known about the rate of convergence of the markov chain that underlies the algorithm. By focusing on a family of instances which adiabatic optimization solves in polynomial time, but require exponential time to solve using classical (thermal) simulated annealing, I will present numerical evidence as well as a work-in-progress proof that SQA can be exponentially faster than classical simulated annealing.
In (relatively) recent years some philosophers of physics have developed and advocated a new view about how to understand spatiotemporal structures posited in theories such as classical mechanics, relativistic theories and GR; it is called the 'dynamical approach' to spacetime (H. Brown 2005, Physical Relativity). The dynamical approach (DA) holds that spacetime structure should not be thought of as conceptually prior to the laws of nature, or as constraining the forms that the laws may have. Instead, the DA approach says that the laws of nature are prior, and spacetime structures are no more than a reflection, or codification, of facts (especially symmetry facts) about the dynamical laws in our world. In my talk I will explore the motivations and arguments given in support of the dynamical approach, and raise doubts about whether they are coherent and compelling. Although no-one should come away from my talk with a perfect understanding of the nature of spacetime (or even just: spacetime as it appears in classical relativistic theories), I hope that all will come to appreciate the difficulty of deciding what even clear and mathematically well-understood physical theories really tell us about basic aspects of physical reality.
In the search for dark matter, neutrino experiments can play a key role by doubling as dark matter production and detection experiments. I will describe how the proposed DAEdALUS decay-at-rest neutrino experiment can be used to search for MeV-scale dark matter, with particular emphasis on dark matter produced through a dark photon in rare neutral pion decays. The fact that the dark photon need not be on-shell opens up a wide range of new possibilities for the experimental program of searching for dark matter at neutrino experiments.
In two spatial dimensions, it is well known that particle-like excitations can come with fractional statistics, beyond the usual dichotomy of Bose versus Fermi statistics. In this talk, I move one dimension higher to three spatial dimensions, and study loop-like objects instead of point-like particles. Just like particles in 2D, loops can exhibit interesting fractional braiding statistics in 3D. I will talk about loop braiding statistics in the context of symmetry protected topological phases, which is a generalization of topological insulators.
The Church-Turing thesis is one of the pillars of computer science; it postulates that every classical system has equivalent computability power to the so-called Turing machine. While this thesis is crucial for our understanding of computing devices, its implications in other scientific fields have hardly been explored. What if we consider the Church-Turing thesis as a law of nature? In this talk I will present our first results in connection with quantum information theory [1] by showing that computer science laws have profound implications for some of the most fundamental results of quantum theory. First I will show how they question our knowledge on what a mixed quantum state is, as we identified situations in which ensembles of quantum states defining the same mixed state, indistinguishable according to the quantum postulates, do become distinguishable when prepared by a computer (or any classical system). Then I will introduce a new loophole for Bell-like experiments: if some of the parties in a Bell-like experiment use a computer to decide which measurements to make, then the computational resources of an eavesdropper have to be limited in order to have a proper observation of non-locality.
I will talk about 4d N=2 gauge theories with a co-dimension-two full surface operator, which exhibit a fascinating interplay of supersymmetric gauge theories, equivariant Gromov-Witten theory and geometric representation theory. For pure Yang-Mills and N=2* theory, a full surface operator can be described as the 4d gauge theory coupled to a 2d N=(2,2) gauge theory. By supersymmetric localizations, we present the exact partition functions of both 4d and 2d theories which satisfy integrable equations. In addition, I will show the validity of the orbifold method in one-loop computations when a full surface operator is inserted, and the form of the structure constants with a semi-degenerate field in SL(N,R) WZNW model is predicted from one-loop determinants.
Recent comparison between observation and expectation could point to problems with the standard cold, non-interacting dark matter picture, one of which being how small the smallest gravitationally bound dark matter halos are. I will review the cold dark matter picture and the experimental tests. One solution to the problems comes from coupling the dark matter to neutrinos. I will describe the model building requirements of such a coupling and determine how to test this scenario.
Forthcoming 21cm intensity mapping surveys on the Square Kilometre Array (SKA) will be capable of probing unprecedentedly large volumes of the Universe. This will make it possible to detect effects beyond the matter-radiation equality peak in the power spectrum, including primordial non-Gaussianity, GR corrections, and possible signatures of modified gravity. I give an overview of the proposed SKA intensity mapping surveys, the science that they will be able to do, and some of the challenges that they face.
The study of ground spaces of local Hamiltonians is a fundamental task in condensed matter physics. In terms of computational complexity theory, a common focus in this area has been to estimate a given Hamiltonian’s ground state energy. However, from a physics perspective, it is sometimes more relevant to understand the structure of the ground space itself. In this talk, we pursue the latter direction by introducing the notion of “ground state connectivity” of local Hamiltonians. In particular, we show that determining how “connected” the ground space of a local Hamiltonian is can range from QCMA-complete to NEXP-complete. (Here, QCMA is the same as QMA, but with a classical witness.) As a result, we obtain a natural QCMA-complete problem, a task which has generally proven difficult since the conception of QCMA over a decade ago.
Moduli fields with Planck suppressed couplings to light species are ubiquitous in string theory and supersymmetry. These scalar fields are expected to dominate the energy budget in the early universe. Their out-of-equilibrium decays can produce dark matter and baryons. Dark matter generated in this non-thermal manner typically has large annihilation rates that are strongly constrained by indirect detection. The resulting bounds on superpartner masses offer dim prospects for collider discovery of supersymmetry. We will discuss extensions of the Minimal Supersymmetric Standard Model (MSSM) that allow low scale supersymmetry accessible by direct searches, while being consistent with astrophysical and cosmological probes. The tension with indirect searches is most easily relieved by allowing the lightest MSSM superpartner to decay into new stable states that play the role of dark matter. We examine the viability of this scenario in models with light Abelian and non-Abelian hidden sectors, and asymmetric dark matter. This latter possibility has a natural connection to theories of baryogenesis.