Format results
- Eugenia Colafranchesci
Nano-Hz Gravitational Wave Astronomy: Its implications and promises
Achamveedu Gopakumar Tata Institute of Fundamental Research (TIFR)
The Moore-Tachikawa conjecture via shifted symplectic geometry
Maxence Mayrand University of Sherbrooke
Lecture - QFT I, PHYS 601
Gang Xu Perimeter Institute for Theoretical Physics
[ONLINE] Colored vertex models, orthogonal functions and probability - II
Michael WheelerICTS:30030New signed bijections pertaining to alternating sign matrices and Gelfand-Tsetlin patterns
Takuya InoueICTS:30031
Observables, Hilbert Spaces and Entropies from the Gravitational Path Integral
Eugenia ColafranchesciThe Ryu-Takayanagi (RT) formula was originally introduced to compute the entropy of holographic boundary conformal field theories. In this talk, I will show how this formula can also be understood as the entropy of an algebra of bulk gravitational observables. Specifically, I will demonstrate that any Euclidean gravitational path integral, when it satisfies a simple set of properties, defines Hilbert spaces associated with closed codimension-2 asymptotic boundaries, along with type I von Neumann algebras of bulk observables acting on these spaces. I will further explain how the path integral naturally defines entropies on these algebras, and how an interesting quantization property leads to a standard state-counting interpretation. Finally, I will show that in the appropriate semiclassical limits, these entropies are computed via the RT formula, thereby providing a bulk Hilbert space interpretation of the RT entropy.
Nano-Hz Gravitational Wave Astronomy: Its implications and promises
Achamveedu Gopakumar Tata Institute of Fundamental Research (TIFR)
Maturing Pulsar Timing Arrays are expected to inaugurate the era of nano-hertz GW astronomy in the coming days under the auspices of the International Pulsar Timing Array. Implications of ongoing IPTA efforts for astrophysics and cosmology will be discussed while focussing on PTA contributions. Ongoing IPTA efforts should lead to persistent multi-messenger GW astronomy with massive BH binaries especially during the Square Kilometre Array era, and its implications will be discussed.
The Moore-Tachikawa conjecture via shifted symplectic geometry
Maxence Mayrand University of Sherbrooke
The Moore-Tachikawa conjecture posits the existence of certain 2-dimensional topological quantum field theories (TQFTs) valued in a category of complex Hamiltonian varieties. Previous work by Ginzburg-Kazhdan and Braverman-Nakajima-Finkelberg has made significant progress toward proving this conjecture. In this talk, I will introduce a new approach to constructing these TQFTs using the framework of shifted symplectic geometry. This higher version of symplectic geometry, initially developed in derived algebraic geometry, also admits a concrete differential-geometric interpretation via Lie groupoids and differential forms, which plays a central role in our results. It provides an algebraic explanation for the existence of these TQFTs, showing that their structure comes naturally from three ingredients: Morita equivalence, as well as multiplication and identity bisections in abelian symplectic groupoids. It also allows us to generalize the Moore-Tachikawa TQFTs in various directions, raising interesting questions in Lie theory and Poisson geometry. This is joint work with Peter Crooks.
Lecture - QFT I, PHYS 601
Gang Xu Perimeter Institute for Theoretical Physics
Law of Fractional Logarithms for Extrema of Airy Processes
Sudeshna BhattacharjeeICTS:30038Airy_1 and Airy_2 processes are stationary stochastic processes on the real line that arise in various contexts in integrable probability. In particular, they are obtained as scaling limits of passage time profiles in planar exponential last passage percolation (LPP) models with different initial conditions. In this talk, we shall present law of fractional logarithms with optimal constants for maxima and minima of Airy processes over growing intervals, extending and complementing the work of Pu. We draw upon the recently established sharp tail estimates for various passage times in exponential LPP by Baslingker et al., as well as geometric properties of exponential LPP landscape. The talk is based on a recent work with Riddhipratim Basu
(https://doi.org/10.48550/arXiv.2406.11826).The Cosmological Standard Model, its Tensions, and New Physics
Florian NiedermannICTS:30115Our Cosmological Standard Model, LambdaCDM, is a remarkable success story. It describes our Universe’s evolution from the Big Bang until today in terms of only a small handful of parameters. Despite its many successes, LambdaCDM is not a fundamental theory. In particular, the microscopic origin of dark matter and dark energy remain among the greatest puzzles in modern physics. Of the two, dark energy poses a particularly vexing challenge, as we lack an understanding of the smallness of its value. At the same time, over the last decade, observations have revealed further cracks in the LambdaCDM model, manifesting as discrepancies between early and late universe determinations of its parameters.
In this lecture, I will first review the LambdaCDM model and establish why it is considered our best model of the Universe. In the second part, I will discuss the intriguing possibility that the cosmic tensions, referring to the observational and theoretical challenges mentioned above, are...
Stationary measures for integrable probabilistic systems
Guillaume BarraquandICTS:30037We will present a method for computing the stationary measures of integrable probabilistic systems on finite domains. Focusing on the example of a well-studied model called last passage percolation, we will describe the stationary measure in various ways, and emphasize the key role played by Schur symmetric functions. The method works as well for other models and their associated families of symmetric functions, suchas Whittaker functions or Hall-Littlewood polynomials. We will also discuss how this is related to the traditional approach for computing stationary measures of interacting particle systems between boundary reservoirs: the matrix product ansatz.
[ONLINE] Colored vertex models, orthogonal functions and probability - II
Michael WheelerICTS:30030A colored vertex model is a solution of the Yang--Baxter equation based on a higher-rank Lie algebra. These models generalize the famous six-vertex model, which may be viewed in terms of osculating lattice paths, to ensembles of colored paths. By studying certain partition functions within these models, one may define families of multivariate rational functions (or polynomials) with remarkable algebraic features. In these lectures, we will examine a number of these properties:
(a) Exchange relations under the Hecke algebra;
(b) Infinite summation identities of Cauchy-type;
(c) Orthogonality with respect to torus scalar products;
(d) Multiplication rules (combinatorial formulae for structure constants).Our aim will be to show that all such properties arise very naturally within the algebraic framework provided by the vertex models. If time permits, applications to probability theory will be surveyed.
Solutions of Magnetohydrodynamics Equation through Symmetries
Peter LeachICTS:30035The magnetohydrodynamics (1 + 1) dimension equation, with a force and force-free term, is analysed with respect to its point symmetries. Interestingly, it reduces to an Abel’s Equation of the second kind and, under certain conditions, to equations specified in Gambier’s family. The symmetry analysis for the force-free term leads to Euler’s Equation and to a system of reduced second-order odes for which singularity analysis is performed to determine their integrability.
Entanglement transitions in non-Hermitian integrable Floquet systems
Tista BanerjeeICTS:30034In this talk I will try to describe how the interplay between the system environment coupling and external driving frequency shapes the dynamical properties and steady state behavior in a periodically driven transverse field Ising chain subject to measurement. I will describe fate of the steady state entanglement scaling properties as a result of measurement induced phase transition. I will briefly explain how such steady state entanglement scaling can be exactly computed using asymptotic analysis of the determinant of associated correlation matrix which turned out to be of block Toeplitz form. I will try to point out the differences from the Hermitian systems in understanding entanglement scaling behaviour in regimes where the asymptotic analysis can be performed using Fisher-Hartwig conjecture. I will end the talk with some open questions in this direction.
New signed bijections pertaining to alternating sign matrices and Gelfand-Tsetlin patterns
Takuya InoueICTS:30031Alternating sign matrices (ASM) and descending plane partitions (DPP) both have the concept of rank, and it has been known that the same number of them exist for each rank (conjectured in 1983 by W. H. Mills, David P. Robbins and Howard Rumsey, Jr., and proved in 1996 by Doron Zeilberger and by Greg Kuperberg independently). However, no explicit bijections between them have been found so far. This problem is known as the ASM-DPP bijection problem.
In 2020, Fischer and Konvalinka constructed a bijection between ASM(n)xDPP(n-1) and ASM(n-1)xDPP(n), where ASM(n) denotes the set of ASMs with rank n, and it is similar for DPP(n). This bijection was developed using the concept of signed bijections. I introduce the notion of compatibility of signed bijections to measure the naturalness of signed bijections and to simplify the construction. In this talk, I present the definition of compatibility and some of the results obtained from it. For example, these include the refined structure of Ge...