Format results
-
Talk
-
Gravity Dual of Quantum Information Metric
Tadashi Takayanagi Yukawa Institute for Theoretical Physics
-
A new perspective on holographic entanglement
Matthew Headrick Brandeis University
-
Universal holographic description of CFT entanglement entropy
Thomas Faulkner University of Illinois Urbana-Champaign
-
Geometric Constructs in AdS/CFT
Veronika Hubeny University of California, Davis
-
Do black holes create polyamory
Jonathan Oppenheim University College London
-
Tensor Network Renormalization and the MERA
Glen Evenbly Georgia Institute of Technology
-
Entanglement renormalization for quantum fields
Jutho Haegeman Ghent University
-
Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence
Fernando Pastawski California Institute of Technology
-
-
Talk
-
Welcome to Perimeter Institute and the EHT 2014 Conference
Neil Turok University of Edinburgh
-
Introduction to EHT
Shep Doeleman Harvard University
-
Growth of supermassive black holes and their relationships to their host galaxies
Marta Volonteri Institut d'Astrophysique de Paris
-
Polarized emission from Black Hole Accretion Disks and Jets
Jonathan McKinney University of Maryland, College Park
-
Stellar Orbits at the Galactic Center
Andrea Ghez University of California, Los Angeles
-
-
The Size and Morphology of Sgr A* at 7mm
Geoff Bower Academia Sinica
-
Particle Acceleration and Non-thermal Emission in Radiatively Inefficient Accretion Flows
Eliot Quataert University of California, Berkeley
-
-
Lecture - Relativity, PHYS 604
Ghazal Geshnizjani Perimeter Institute for Theoretical Physics
-
Lecture - Relativity, PHYS 604
Ghazal Geshnizjani Perimeter Institute for Theoretical Physics
-
Forming truncated accretion disks
Gibwa Musoke -
Lecture - Relativity, PHYS 604
Ghazal Geshnizjani Perimeter Institute for Theoretical Physics
-
Lecture - Relativity, PHYS 604
Ghazal Geshnizjani Perimeter Institute for Theoretical Physics
-
Lecture - Relativity, PHYS 604
Ghazal Geshnizjani Perimeter Institute for Theoretical Physics
-
-
Lecture - Relativity, PHYS 604
Ghazal Geshnizjani Perimeter Institute for Theoretical Physics
-
Lecture - Relativity, PHYS 604
Ghazal Geshnizjani Perimeter Institute for Theoretical Physics
-
The dynamics of dRGT massive gravity
Jan Kożuszek Imperial College London
-
Quantum Information in Quantum Gravity II
Quantum Information in Quantum Gravity II -
-
-
Forming truncated accretion disks
Gibwa MusokeBlack hole X-ray binaries and Active Galactic Nuclei transition through a series of accretion states in a well-defined order. During a state transition, the accretion flow changes from a hot geometrically thick accretion flow, emitting a power-law–like hard spectrum to a geometrically thin, cool accretion flow, producing black-body–like soft spectrum. The hard intermediate accretion state present in the midst of a state transition is thought to be associated with the presence of both a hot geometrically thick component, termed the corona, and a cool, geometrically thin component of the accretion flow. The details concerning the geometry of the disk in the hard intermediate state are not agreed upon and numerous models have been proposed: In the “truncated disk” model, the accretion flow is geometrically thick and hot close to the black hole, while the outer regions of the flow are geometrically thin and cool. There are many open questions concerning the nature of truncated accretion disks: Which mechanisms generate the truncated disk structure? What sets the radius at which the disk truncates? How is the corona formed and what is its geometry? In this talk I present the first high-resolution 3D General Relativistic Magneto-Hydrodynamic (GRMHD) simulation and radiative GRMHD simulation modelling the self-consistent formation of a truncated accretion disk around a black hole.
-
-
-
-
Testing General Relativity with Ensembles of Compact Binary Mergers: the Importance of Astrophysics and Statistical Assumptions
Ethan Payne Caltech
Observations of gravitational waves from binary black-hole mergers provide a unique testbed for General Relativity in the strong-field regime. To extract the most information, many gravitational-wave signals can be used in concert to place constraints on theories beyond General Relativity. Although these hierarchical inference methods have allowed for more informative tests, careful consideration is needed when working with astrophysical observations. Assumptions about the underlying astrophysical population and the detectability of possible deviations can influence hierarchical analyses, potentially biasing the results. In this talk, I will address these key assumptions and discuss their mitigation. Finally, I will demonstrate how we can leverage the astrophysical nature of gravitational-wave observations to our advantage to empirically bound the curvature dependence of extensions to General Relativity.
-
-
-
The dynamics of dRGT massive gravity
Jan Kożuszek Imperial College London
After reviewing the motivation and challenges connected with the dRGT theory of ghost-free massive gravity, we discuss our recent progress in understanding non-linear dynamics of this model. In spherical symmetry, numerical studies suggest the formation of naked singularities during gravitational collapse of matter. Analytically, the same can be seen in the limit where the graviton mass is much smaller than the scales of the matter present. Both of these results underline the need to move beyond spherical symmetry to try and obtain realistic predictions. To that end, we present a new ‘harmonic-inspired’ formulation of the minimal model and argue that it is well-posed, opening the door to full 3+1 numerical simulations.