Search results from PIRSA
Format results
-
-
-
-
Unraveling quantum many-body scars: Insights from collective spin models
Meenu Kumari National Research Council Canada (NRC)
-
A Novel Perspective on the Continuum Limit in Quantum Gravity
Susanne Schander Perimeter Institute for Theoretical Physics
-
Typical eigenstate entanglement entropy as a diagnostic of quantum chaos and integrability
Marcos Rigol Pennsylvania State University
-
Approximate Quantum Codes From Long Wormholes
Brian Swingle Brandeis University
-
Defining stable steady-state phases of open systems
Sarang Gopalakrishnan Princeton University
-
Classical Black Hole Scattering from a World-Line Quantum Field Theory - VIRTUAL
Jan Plefka Humboldt University of Berlin
-
Certifying almost all quantum states with few single-qubit measurements
Hsin-Yuan Huang California Institute of Technology (Caltech)
-
Entanglement-based probes of topological phases of matter
Michael Levin University of Chicago
-
How much entanglement is needed for quantum error correction?
Zhi Li Perimeter Institute for Theoretical Physics
-
Fault tolerance with the ZX-calculus and fusion complexes
Naomi Nickerson PSI Quantum
Quantum error correction methods for qubit technologies such as ions, photons, or superconducting qubits can appear very different at first glance. Moreover, as more detailed error models are accounted for, the relationship to the abstract models of fault tolerance can appear to become more distant. In this talk I will discuss two unifying frameworks which connect hardware specific models more closely to the underlying code structures, which can help enable QEC development. First I will introduce a unifying framework for fault tolerance based on the ZX calculus (arXiv:2303.08829) and show how it allows us to view circuit-based, measurement-based, fusion-based quantum computation, and Floquet codes as different flavors of the same underlying stabilizer fault-tolerance structure. Secondly I will introduce fusion complexes (arXiv:2308.07844) which allows a topological interpretation of fault tolerance even under circuit level error models. Both of these frameworks are tools that can aid in the design of quantum error correction methods under hardware-focussed models, and I will give some examples of this applied to the design of photonic architectures. -
Landscape of Measurement-Prepared Tensor Networks and Decohered Non-Abelian Topological Order
Ruben Verresen University of Chicago
What is the structure of many-body quantum phases and transitions in the presence of non-unitary elements, such as decoherence or measurements? In this talk we explore two new directions. First, recent works have shown that even if one starts with an ideal preparation of topological order such as the toric code, decoherence can lead to interesting mixed states with subtle phase transitions [e.g., Fan et al, arXiv:2301.05689]. Motivated by a recent experimental realization of non-Abelian topological order [Iqbal et al, Nature 626 (2024)], we generalize this to decohered non-Abelian states, based on work with Pablo Sala and Jason Alicea [to appear]. Second, we study whether and how one can prepare pure states which are already detuned from ideal fixed-point cases---with tunable correlation lengths. This turns out to be possible for large classes of tensor network states which can be deterministically prepared using finite-depth measurement protocols. This is based on two recent works with Rahul Sahay [arXiv:2404.17087; arXiv:2404.16753]. -
Electromagnetic precursors to compact mergers (and other EM-GR phenomena)
Maxim Lyutikov Purdue University
I will review various mechanisms and detection strategies of precursor emission to black holes and neutron stars mergers. I will also discuss other peculiar physical processes at the intersection of electromagnetism, classical General Relativity, and the physics of continuous media.
--
-
Unraveling quantum many-body scars: Insights from collective spin models
Meenu Kumari National Research Council Canada (NRC)
Quantum many-body scars (QMBS) are atypical eigenstates of chaotic systems that are characterized by sub-volume or area law entanglement as opposed to the volume law present in the bulk of the eigenstates. The term, QMBS, was coined using heuristic correlations with quantum scars - eigenstates with high probability density around unstable classical periodic orbits in quantum systems with a semiclassical description. Through the study of entanglement in a multi-qubit system with a semiclassical description, quantum kicked top (QKT), we show that the properties of QMBS states strongly correlate with the eigenstates corresponding to the very few stable periodic orbits in a chaotic system as opposed to quantum scars in such systems. Specifically, we find that eigenstates associated with stable periodic orbits of small periodicity in chaotic regime exhibit markedly different entanglement scaling compared to chaotic quantum states, while quantum scar eigenstates demonstrate entanglement scaling resembling that of chaotic quantum states. Our findings reveal that quantum many-body scars and quantum scars are distinct. This work is in collaboration with Cheng-Ju Lin and Amirreza Negari. -
A Novel Perspective on the Continuum Limit in Quantum Gravity
Susanne Schander Perimeter Institute for Theoretical Physics
Some of the most fundamental challenges in quantum gravity involve determining how to take the continuum limit of the underlying regularized theory and how to preserve the causal structure of space-time. Several approaches to quantum gravity attempt to address these questions, but the technical challenges are substantial.
In this talk, we present a novel approach to a lattice-regularized theory of quantum gravity, using techniques from standard lattice quantum field theories to overcome these challenges. Our approach is inspired by quantum geometrodynamics, the earliest attempt at quantizing gravity. While the original approach suffered from the usual shortcomings pertaining to the multiplication of distributions and consequently failed, we propose a novel lattice regularization that is especially well suited for studying the continuum limit. First, we examine the lattice corrections to the theory and quantize these lattice theories in a manner that ensures the manifest causal structure of space-time. Next, we discuss the constructions involved in obtaining a well-defined continuum limit and explain how our approach can overcome some conceptually unappealing aspects.
---
-
Typical eigenstate entanglement entropy as a diagnostic of quantum chaos and integrability
Marcos Rigol Pennsylvania State University
Quantum-chaotic systems are known to exhibit eigenstate thermalization and to generically thermalize under unitary dynamics. In contrast, quantum-integrable systems exhibit a generalized form of eigenstate thermalization and need to be described using generalized Gibbs ensembles after equilibration. I will discuss evidence that the entanglement properties of highly excited eigenstates of quantum-chaotic and quantum-integrable systems are fundamentally different. They both exhibit a typical bipartite entanglement entropy whose leading term scales with the volume of the subsystem. However, while the coefficient is constant and maximal in quantum- chaotic models, in integrable models it depends on the fraction of the system that is traced out. The latter is typical in random Gaussian pure states. I will also discuss the nature of the subleading corrections that emerge as a consequence of the presence of abelian and nonabelian symmetries in such models. -
Approximate Quantum Codes From Long Wormholes
Brian Swingle Brandeis University
We discuss families of approximate quantum error correcting codes which arise as the nearly-degenerate ground states of certain quantum many-body Hamiltonians composed of non-commuting terms. For exact codes, the conditions for error correction can be formulated in terms of the vanishing of a two-sided mutual information in a low-temperature thermofield double state. We consider a notion of distance for approximate codes obtained by demanding that this mutual information instead be small, and we evaluate this mutual information for the Sachdev-Ye-Kitaev (SYK) model and for a family of low-rank SYK models. After an extrapolation to nearly zero temperature, we find that both kinds of models produce fermionic codes with constant rate as the number, N, of fermions goes to infinity. For SYK, the distance scales as N^1/2, and for low-rank SYK, the distance can be arbitrarily close to linear scaling, e.g. N^.99, while maintaining a constant rate. We also consider an analog of the no low-energy trivial states property and show that these models do have trivial low-energy states in the sense of adiabatic continuity. We discuss a holographic model of these codes in which the large code distance is a consequence of the emergence of a long wormhole geometry in a simple model of quantum gravity -
Defining stable steady-state phases of open systems
Sarang Gopalakrishnan Princeton University
The steady states of dynamical processes can exhibit stable nontrivial phases, which can also serve as fault-tolerant classical or quantum memories. For Markovian quantum (classical) dynamics, these steady states are extremal eigenvectors of the non-Hermitian operators that generate the dynamics, i.e., quantum channels (Markov chains). However, since these operators are non-Hermitian, their spectra are an unreliable guide to dynamical relaxation timescales or to stability against perturbations. We propose an alternative dynamical criterion for a steady state to be in a stable phase, which we name uniformity: informally, our criterion amounts to requiring that, under sufficiently small local perturbations of the dynamics, the unperturbed and perturbed steady states are related to one another by a finite-time dissipative evolution. We show that this criterion implies many of the properties one would want from any reasonable definition of a phase. We prove that uniformity is satisfied in a canonical classical cellular automaton, and provide numerical evidence that the gap determines the relaxation rate between nearby steady states in the same phase, a situation we conjecture holds generically whenever uniformity is satisfied. We further conjecture some sufficient conditions for a channel to exhibit uniformity and therefore stability. -
Classical Black Hole Scattering from a World-Line Quantum Field Theory - VIRTUAL
Jan Plefka Humboldt University of Berlin
Predicting the outcome of scattering processes of elementary particles in colliders is the central achievement of relativistic quantum field theory applied to the fundamental (non-gravitational) interactions of nature. While the gravitational interactions are too minuscule to be observed in the microcosm, they dominate the interactions at large scales. As such the inspiral and merger of black holes and neutron stars in our universe are now routinely observed by gravitational wave detectors. The need for high precision theory predictions of the emitted gravitational waveforms has opened a new window for the application of perturbative quantum field theory techniques to the domain of gravity. In this talk I will show how observables in the classical scattering of black holes and neutron stars can be efficiently computed in a perturbative expansion using a world-line quantum field theory; thereby combining state-of-the-art Feynman integration technology with perturbative quantum gravity. Here, the black holes or neutron stars are modelled as point particles in an effective field theory sense. Fascinatingly, the intrinsic spin of the black holes may be captured by a supersymmetric extension of the world-line theory, enabling the computation of the far field wave-form including spin and tidal effects to highest precision. I will review our most recent results at the fifth order in the post-Minkowskian expansion amounting to the computations of hundreds of thousands of four loop Feynman integrals.
---
-
Certifying almost all quantum states with few single-qubit measurements
Hsin-Yuan Huang California Institute of Technology (Caltech)
Certifying that an n-qubit state synthesized in the lab is close to the target state is a fundamental task in quantum information science. However, existing rigorous protocols either require deep quantum circuits or exponentially many single-qubit measurements. In this work, we prove that almost all n-qubit target states, including those with exponential circuit complexity, can be certified from only O(n^2) single-qubit measurements. This result is established by a new technique that relates certification to the mixing time of a random walk. Our protocol has applications for benchmarking quantum systems, for optimizing quantum circuits to generate a desired target state, and for learning and verifying neural networks, tensor networks, and various other representations of quantum states using only single-qubit measurements. We show that such verified representations can be used to efficiently predict highly non-local properties that would otherwise require an exponential number of measurements. We demonstrate these applications in numerical experiments with up to 120 qubits, and observe advantage over existing methods such as cross-entropy benchmarking (XEB). -
Entanglement-based probes of topological phases of matter
Michael Levin University of Chicago
I will discuss recent progress in understanding entanglement-based probes of 2D topological phases of matter. These probes are supposed to extract universal topological information from a many-body ground state. Specifically, I will discuss (1) the topological entanglement entropy, which is supposed to give information about the number of anyon excitations, and (2) the modular commutator, which is supposed to tell us the chiral central charge. -
How much entanglement is needed for quantum error correction?
Zhi Li Perimeter Institute for Theoretical Physics
It is commonly believed that logical states of quantum error-correcting codes have to be highly entangled such that codes capable of correcting more errors require more entanglement to encode a qubit. Here we show that this belief may or may not be true depending on a particular code. To this end, we characterize a tradeoff between the code distance d quantifying the number of correctable errors, and geometric entanglement of logical states quantifying their maximal overlap with product states or more general ``topologically trivial" states. The maximum overlap is shown to be exponentially small in d for three families of codes: (1) low-density parity check (LDPC) codes with commuting check operators, (2) stabilizer codes, and (3) codes with a constant encoding rate. Equivalently, the geometric entanglement of any logical state of these codes grows at least linearly with d. On the opposite side, we also show that this distance-entanglement tradeoff does not hold in general. For any constant d and k (number of logical qubits), we show there exists a family of codes such that the geometric entanglement of some logical states approaches zero in the limit of large code length.