Search results from PIRSA
Format results
-
Talk
-
Numerical Methods Lecture - 230207
Erik Schnetter Perimeter Institute for Theoretical Physics
PIRSA:23020001 -
Numerical Methods Lecture - 230202
Erik Schnetter Perimeter Institute for Theoretical Physics
PIRSA:23020000 -
Numerical Methods Lecture - 230201
Erik Schnetter Perimeter Institute for Theoretical Physics
PIRSA:23020003 -
Numerical Methods Lecture - 230131
Erik Schnetter Perimeter Institute for Theoretical Physics
PIRSA:23010008 -
Numerical Methods Lecture - 230126
Erik Schnetter Perimeter Institute for Theoretical Physics
PIRSA:23010007 -
Numerical Methods Lecture - 230124
Erik Schnetter Perimeter Institute for Theoretical Physics
PIRSA:23010006 -
Numerical Methods Lecture - 230120
Erik Schnetter Perimeter Institute for Theoretical Physics
PIRSA:23010011 -
Numerical Methods Lecture - 230119
Erik Schnetter Perimeter Institute for Theoretical Physics
PIRSA:23010005
-
-
Talk
-
-
Talk
-
-
Talk
-
-
Talk
-
Quantum Foundations Lecture - 230206
Lucien Hardy Perimeter Institute for Theoretical Physics
PIRSA:23020017 -
Quantum Foundations Lecture - 230203
Lucien Hardy Perimeter Institute for Theoretical Physics
PIRSA:23020016 -
Quantum Foundations Lecture - 230102
Lucien Hardy Perimeter Institute for Theoretical Physics
PIRSA:23020015 -
Quantum Foundations Lecture - 230130
Lucien Hardy Perimeter Institute for Theoretical Physics
PIRSA:23010055 -
Quantum Foundations Lecture - 230127
Lucien Hardy Perimeter Institute for Theoretical Physics
PIRSA:23010054 -
Quantum Foundations Lecture - 230125
Lucien Hardy Perimeter Institute for Theoretical Physics
PIRSA:23010053 -
Quantum Foundations Lecture - 230123
Lucien Hardy Perimeter Institute for Theoretical Physics
PIRSA:23010052 -
Quantum Foundations Lecture - 230120
Lucien Hardy Perimeter Institute for Theoretical Physics
PIRSA:23010051
-
-
Talk
-
Quantum adiabatic speedup on a class of combinatorial optimization problems
-
Madelyn Cain Harvard University
- Madelyn Cain
-
-
Towards an artificial Muse for new ideas in Quantum Physics
Mario Krenn Max Planck Institute for the Science of Light
-
-
Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks
Friederike Metz L'Ecole Polytechnique Federale de Lausanne (EPFL)
-
A Study of Neural Network Field Theories
Anindita Maiti Perimeter Institute for Theoretical Physics
-
-
Representing quantum states with spiking neural networks
-
Stefanie Czischek University of Ottawa
- Stefanie Czischek
-
-
Adaptive Quantum State Tomography with Active Learning
Hannah Lange Ludwig-Maximilians-Universität München (LMU)
-
-
Talk
-
Quantum Field Theory II - Lecture 221213
PIRSA:22120005 -
Quantum Field Theory II - Lecture 221212
PIRSA:22120004 -
Quantum Field Theory II - Lecture 221207
PIRSA:22120003 -
Quantum Field Theory II - Lecture 221206
PIRSA:22120002 -
Quantum Field Theory II - Lecture 221205
PIRSA:22120001 -
Quantum Field Theory II - Lecture 221202
PIRSA:22120000 -
Quantum Field Theory II - Lecture 221130
PIRSA:22110011 -
Quantum Field Theory II - Lecture 221128
PIRSA:22110010
-
-
Talk
-
Statistical Physics - Lecture 221213
PIRSA:22120011 -
Statistical Physics - Lecture 221212
PIRSA:22120010 -
Statistical Physics - Lecture 221207
PIRSA:22120009 -
Statistical Physics - Lecture 221206
PIRSA:22120008 -
Statistical Physics - Lecture 221205
PIRSA:22120007 -
Statistical Physics - Lecture 221201
PIRSA:22120006 -
Statistical Physics - Lecture 221130
PIRSA:22110019 -
Statistical Physics - Lecture 221128
PIRSA:22110018
-
-
Talk
-
-
Topological superconductivity in twisted double-layer high-Tc cuprates: Theory and experimental signatures
Marcel Franz University of British Columbia
-
Stacking Induced Spontaneous Polarization in Rhombohedral MoS2
Ziliang Ye University of British Columbia
-
-
Z2 spin liquids in spin-S Kitaev honeycomb model via parton construction
Han Ma Perimeter Institute for Theoretical Physics
-
-
Non-Fermi liquids and quantum criticality in multipolar Kondo systems
Yong-Baek Kim University of Toronto
-
-
-
Talk
-
QFT2 - Quantum Electrodynamics - Afternoon Lecture
Cliff Burgess McMaster University
-
-
QFT2 - Quantum Electrodynamics - Afternoon Lecture
Cliff Burgess McMaster University
-
-
QFT2 - Quantum Electrodynamics - Afternoon Lecture
Cliff Burgess McMaster University
-
-
QFT2 - Quantum Electrodynamics - Afternoon Lecture
Cliff Burgess McMaster University
-
-
-
Talk
-
Welcoming Remarks
PIRSA:22100114 -
Session 1 - Mykola Semenyakin
Mykola Semenyakin Perimeter Institute for Theoretical Physics
PIRSA:22100115 -
-
-
-
Session 1 - Valentina Prilepina
Valentina Prilepina Lomonosov Moscow State University
PIRSA:22100124 -
-
-
-
Talk
-
-
Special Guest Talk - 'Science Opportunities Underground: Neutrinos and Dark Matter'
Arthur B. McDonald Queen's University
PIRSA:22100064 -
Special Guest Talk - 'How to take a picture of a black hole'
Shep Doeleman Harvard University
PIRSA:22100066 -
Perimeter Researcher Talk - 'CHIME: the Canadian Hydrogen Intensity Mapping Experiment'
Kendrick SmithPIRSA:22100067 -
Panel Session: Luck vs Grit
-
Asimina Arvanitaki Perimeter Institute
-
Arthur B. McDonald Queen's University
- Katie Mack
PIRSA:22100068 -
-
Special Guest Talk - 'The serendipitous road to a Nobel prize'
Anthony Leggett University of Illinois Urbana-Champaign
PIRSA:22100069 -
Perimeter Researcher Talk - 'Measurement as a shortcut to long-range entangled matter'
Timothy Hsieh Perimeter Institute for Theoretical Physics
PIRSA:22100070 -
Special Guest Talk - 'From nonlinear optics to high intensity laser physics'
Donna Strickland University of Waterloo
PIRSA:22100071
-
-
Numerical Methods (2022/2023)
This course teaches basic numerical methods that are widely used across many fields of physics. The course is based on the Julia programming language. Topics include an introduction to Julia, linear algebra, Monte Carlo methods, differential equations, and are based on applications by researchers at Perimeter. The course will also teach principles of software engineering ensuring reproducible results. -
Mathematical Physics (2022/2023)
This course will cover the mathematical structure underlying classical gauge theory. Previous knowledge of differential geometry is not required. Topics covered in the course include: introduction to manifolds, symplectic manifolds, introduction to Lie groups and Lie algebras; deformation quantisation and geometric quantisation; the matematical structure of field theories; scalar field theory; geometric picture of Yang-Mills theory; symplectic reduction. If time permits, we may also look at the description of gauge theory in terms of principal bundles and the topological aspects of gauge theory. -
Standard Model (2022/2023)
Topics will include: Non-abelian gauge theory (aka Yang-Mills theory), the Standard Model (SM) as a particular non-abelian gauge theory (its gauge symmetry, particle content, and Lagrangian, Yukawa couplings, CKM matrix, 3 generations), spontaneous symmetry breaking: global vs local symmetries (Goldstone's Theorem vs Higgs Mechanism; mass generation for bosons and fermions), neutrino sector (including right-handed neutrinos?), effective field theory, Feynman rules (Standard Model propagators and vertices), gauge and global anomalies, strong CP problem, renormalization group (beta functions, asymptotic freedom, quark confinement, mesons, baryons, Higgs instability, hierarchy problem), unexplained puzzles in the SM, and surprising/intriguing aspects of SM structure that hint at a deeper picture. -
Gravitational Physics (2022/2023)
The main objective of this course is to discuss some advanced topics in gravitational physics and its applications to high energy physics. Necessary mathematical tools will be introduced on the way. These mathematical tools will include a review of differential geometry (tensors, forms, Lie derivative), vielbeins and Cartan’s formalism, hypersurfaces, Gauss-Codazzi formalism, and variational principles (Einstein-Hilbert action & Gibbons-Hawking term). Several topics in black hole physics including the Kerr solution, black hole astrophysics, higher-dimensional black holes, black hole thermodynamics, Euclidean action, and Hawking radiation will be covered. Additional advanced topics will include domain walls, brane world scenarios, Kaluza-Klein theory and KK black holes, Gregory-Laflamme instability, and gravitational instantons
-
Quantum Foundations (2022/2023)
This course will cover the basics of Quantum Foundations under three main headings. Part I – Novel effects in Quantum Theory. A number of interesting quantum effects will be considered. (a) Interferometers: Mach-Zehnder interferometer, Elitzur-Vaidman bomb tester, (b) The quantum-Zeno effect. (c) The no cloning theorem. (d) Quantum optics (single mode). Hong-Ou-Mandel dip. Part II Conceptual and interpretational issues. (a) Axioms for quantum theory for pure states. (b) Von-Neumann measurement model. * (c) The measurement (or reality) problem. (d) EPR Einstein’s 1927 remarks, the Einstein-Podolsky-Rosen argument. (e) Bell’s theorem, nonlocality without inequalities. The Tirolson bound. (f) The Kochen-Specker theorem and related work by Spekkens (g) On the reality of the wavefunction: Epistemic versus ontic interpretations of the wavefunction and the Pusey-Barrett-Rudolph theorem proving the reality of the wave function. (h) Gleason’s theorem. (i) Interpretations. The landscape of interpretations of quantum theory (the Harrigen Spekkens classification). The de Broglie-Bohm interpretation, the many worlds interpretation, wave-function collapse models, the Copenhagen interpretation, and QBism. Part III Structural issues. (a) Reformulating quantum theory: I will look at some reformulations of quantum theory and consider the light they throw on the structure of quantum theory. These may include time symmetric quantum theory and weak measurements (Aharonov et al), quantum Bayesian networks, and the operator tensor formalism. (b) Generalised probability theories: These are more general frameworks for probabilistic theories which admit classical and quantum as special cases. (c) Reasonable principles for quantum theory: I will review some of the recent work on reconstructing quantum theory from simple principles. (d) Indefinite causal structure and indefinite causal order. Finally I will conclude by looking at (i) the close link between quantum foundations and quantum information and (ii) possible future directions in quantum gravity motivated by ideas from quantum foundations.
-
New Frontiers in Machine Learning and Quantum
This workshop will bring together a group of young trendsetters working at the frontier of machine learning and quantum information. The workshop will feature two days of talks, and ample time for participants to interact and form new collaborations in the inspiring environment of the Perimeter Institute. Topics will include machine learning, quantum field theory, quantum information, and unifying theoretical concepts.
Territorial Land AcknowledgementPerimeter Institute acknowledges that it is situated on the traditional territory of the Anishinaabe, Haudenosaunee, and Neutral peoples.
Perimeter Institute is located on the Haldimand Tract. After the American Revolution, the tract was granted by the British to the Six Nations of the Grand River and the Mississaugas of the Credit First Nation as compensation for their role in the war and for the loss of their traditional lands in upstate New York. Of the 950,000 acres granted to the Haudenosaunee, less than 5 percent remains Six Nations land. Only 6,100 acres remain Mississaugas of the Credit land.
We thank the Anishinaabe, Haudenosaunee, and Neutral peoples for hosting us on their land.
-
Quantum Field Theory II (2022/2023)
The course has three parts. In the first part of the course, the path integral formulation of non-relativistic quantum mechanics and the functional integral formulation of quantum field theory are developed. The second part of the course covers renormalization and the renormalization group. Finally, non-abelian gauge theories are quantized using functional integral techniques.
-
Statistical Physics (2022/2023)
The course begins by discussing several topics in equilibrium statistical physics including phase transitions and the renormalization group. The second part of the course covers non-equilibrium statistical physics including kinetics of aggregation, spin dynamics, population dynamics, and complex networks.
-
Quantum Matter Workshop
The goal of this conference is for quantum matter researchers at Perimeter, University of British Columbia, and University of Toronto to share their recent work with each other, to facilitate discussion and collaboration.
Territorial Land AcknowledgementPerimeter Institute acknowledges that it is situated on the traditional territory of the Anishinaabe, Haudenosaunee, and Neutral peoples.
Perimeter Institute is located on the Haldimand Tract. After the American Revolution, the tract was granted by the British to the Six Nations of the Grand River and the Mississaugas of the Credit First Nation as compensation for their role in the war and for the loss of their traditional lands in upstate New York. Of the 950,000 acres granted to the Haudenosaunee, less than 5 percent remains Six Nations land. Only 6,100 acres remain Mississaugas of the Credit land.
We thank the Anishinaabe, Haudenosaunee, and Neutral peoples for hosting us on their land.
-
Special Topics in Physics - QFT2: Quantum Electrodynamics (Cliff Burgess)
This course uses quantum electrodynamics (QED) as a vehicle for covering several more advanced topics within quantum field theory, and so is aimed at graduate students that already have had an introductory course on quantum field theory. Among the topics hoped to be covered are: gauge invariance for massless spin-1 particles from special relativity and quantum mechanics; Ward identities; photon scattering and loops; UV and IR divergences and why they are handled differently; effective theories and the renormalization group; anomalies.
-
POSTDOC WELCOME 2022
Join us on Monday October 24 to welcome our new cohort of postdocs at Perimeter Institute at the Postdoc Welcome 2022! Each new postdoc will be given 5 minutes to introduce themselves to the PI Community. The time will be used to tell us a little bit about themselves and to showcase their current research. These presentations are very casual and should not be misconstrued as formal talks. Some discussion will follow the presentations, whereby current PI Residents may have the opportunity to ask questions.
Conference Schedule:
9:30AM - 11AM - short talks session 1 in Sky room.
11:00AM -11:30AM - coffee break in 1st floor Bistro
11:30AM - 1:00PM - short talks session 2 in Sky room.
1:00PM - 2:00PM - group lunch in the Bistro in 2nd floor Bistro (new postdocs, postdoc reps)
2:00PM - 5:30PM - off-site activity (new postdocs, existing postdocs)https://pirsa.org/C22042
Territorial Land Acknowledgement
Perimeter Institute acknowledges that it is situated on the traditional territory of the Anishinaabe, Haudenosaunee, and Neutral peoples.
Perimeter Institute is located on the Haldimand Tract. After the American Revolution, the tract was granted by the British to the Six Nations of the Grand River and the Mississaugas of the Credit First Nation as compensation for their role in the war and for the loss of their traditional lands in upstate New York. Of the 950,000 acres granted to the Haudenosaunee, less than 5 percent remains Six Nations land. Only 6,100 acres remain Mississaugas of the Credit land.
We thank the Anishinaabe, Haudenosaunee, and Neutral peoples for hosting us on their land.
-
The Day of Discovery
Join us for a day that celebrates the advance of human knowledge! Come and hear from scientific luminaries responsible for defining the modern landscape of physics and working to transform it in the future. Presentations by Nobel and Breakthrough Prize winners will describe some of the most exciting topics in science today, followed by talks by Perimeter researchers on how these are being pursued now, and culminating with animated panel conversations on how breakthrough science was, is and will be done.
https://pirsa.org/C22040
Territorial Land Acknowledgement
Perimeter Institute acknowledges that it is situated on the traditional territory of the Anishinaabe, Haudenosaunee, and Neutral peoples.
Perimeter Institute is located on the Haldimand Tract. After the American Revolution, the tract was granted by the British to the Six Nations of the Grand River and the Mississaugas of the Credit First Nation as compensation for their role in the war and for the loss of their traditional lands in upstate New York. Of the 950,000 acres granted to the Haudenosaunee, less than 5 percent remains Six Nations land. Only 6,100 acres remain Mississaugas of the Credit land.
We thank the Anishinaabe, Haudenosaunee, and Neutral peoples for hosting us on their land.