Search results from PIRSA
Format results
-
Talk
-
Causal Inference Lecture - 230412
Robert Spekkens Perimeter Institute for Theoretical Physics
PIRSA:23040003 -
Causal Inference Lecture - 230405
Robert Spekkens Perimeter Institute for Theoretical Physics
PIRSA:23040001 -
Causal Inference Lecture - 230403
Robert Spekkens Perimeter Institute for Theoretical Physics
PIRSA:23040000 -
Causal Inference Lecture - 230329
Robert Spekkens Perimeter Institute for Theoretical Physics
PIRSA:23030076 -
Causal Inference Lecture - 230322
Robert Spekkens Perimeter Institute for Theoretical Physics
PIRSA:23030074 -
Causal Inference Lecture - 230320
Robert Spekkens Perimeter Institute for Theoretical Physics
PIRSA:23030073 -
Causal Inference Lecture - 230315
Robert Spekkens Perimeter Institute for Theoretical Physics
PIRSA:23030072 -
Causal Inference Lecture - 230313
Robert Spekkens Perimeter Institute for Theoretical Physics
PIRSA:23030071
-
-
Talk
-
-
Quantum Field Theory in Curved Spacetime (PM) - 2023-03-31
Sergey Sibiryakov McMaster University
-
Quantum Field Theory in Curved Spacetime (PM) - 2023-03-24
Sergey Sibiryakov McMaster University
-
Quantum Field Theory in Curved Spacetime (PM) - 2023-03-17
Sergey Sibiryakov McMaster University
-
Quantum Field Theory in Curved Spacetime (PM) - 2023-03-10
Sergey Sibiryakov McMaster University
-
Quantum Field Theory in Curved Spacetime (PM) - 2023-03-03
Sergey Sibiryakov McMaster University
-
Quantum Field Theory in Curved Spacetime (AM) - 2023-03-03
Sergey Sibiryakov McMaster University
-
-
Talk
-
Quantum Information Lecture - 230331
Eduardo Martin-Martinez Institute for Quantum Computing (IQC)
PIRSA:23030014 -
Quantum Information Lecture - 230329
Eduardo Martin-Martinez Institute for Quantum Computing (IQC)
PIRSA:23030013 -
Quantum Information Lecture - 230327
Eduardo Martin-Martinez Institute for Quantum Computing (IQC)
PIRSA:23030012 -
Quantum Information Lecture - 230324
Eduardo Martin-Martinez Institute for Quantum Computing (IQC)
PIRSA:23030011 -
Quantum Information Lecture - 230322
Eduardo Martin-Martinez Institute for Quantum Computing (IQC)
PIRSA:23030010 -
Quantum Information Lecture - 230320
Eduardo Martin-Martinez Institute for Quantum Computing (IQC)
PIRSA:23030009 -
Quantum Information Lecture - 230315
Eduardo Martin-Martinez Institute for Quantum Computing (IQC)
PIRSA:23030007 -
Quantum Information Lecture - 230313
Eduardo Martin-Martinez Institute for Quantum Computing (IQC)
PIRSA:23030006
-
-
Talk
-
Quantum Fields and Strings Lecture - 230331
Davide Gaiotto Perimeter Institute for Theoretical Physics
PIRSA:23030028 -
Quantum Fields and Strings Lecture - 230329
Davide Gaiotto Perimeter Institute for Theoretical Physics
PIRSA:23030027 -
Quantum Fields and Strings Lecture - 230327
Davide Gaiotto Perimeter Institute for Theoretical Physics
PIRSA:23030026 -
Quantum Fields and Strings Lecture - 230324
Davide Gaiotto Perimeter Institute for Theoretical Physics
PIRSA:23030025 -
Quantum Fields and Strings Lecture - 230322
Davide Gaiotto Perimeter Institute for Theoretical Physics
PIRSA:23030024 -
Quantum Fields and Strings Lecture - 230320
Davide Gaiotto Perimeter Institute for Theoretical Physics
PIRSA:23030023 -
Quantum Fields and Strings Lecture - 230315
Jaume Gomis Perimeter Institute for Theoretical Physics
PIRSA:23030021 -
Quantum Fields and Strings Lecture - 230313
Jaume Gomis Perimeter Institute for Theoretical Physics
PIRSA:23030020
-
-
Talk
-
-
-
Machine Learning Lecture - 230327
-
Joan Arrow University of Waterloo
-
Sarah Marsh City of Kitchener
PIRSA:23030041 -
-
Machine Learning Lecture - 230323
Lauren Hayward Perimeter Institute for Theoretical Physics
PIRSA:23030035 -
Machine Learning Lecture - 230321
Lauren Hayward Perimeter Institute for Theoretical Physics
PIRSA:23030034 -
Machine Learning Lecture - 230320
Lauren Hayward Perimeter Institute for Theoretical Physics
PIRSA:23030040 -
Machine Learning Lecture - 230314
Lauren Hayward Perimeter Institute for Theoretical Physics
PIRSA:23030032 -
Machine Learning Lecture - 230309
Lauren Hayward Perimeter Institute for Theoretical Physics
PIRSA:23030031
-
-
Talk
-
Strong Gravity Lecture - 230330
William East Perimeter Institute for Theoretical Physics
PIRSA:23030050 -
Strong Gravity Lecture - 230328
William East Perimeter Institute for Theoretical Physics
PIRSA:23030049 -
Strong Gravity Lecture - 230327
William East Perimeter Institute for Theoretical Physics
PIRSA:23030054 -
Strong Gravity Lecture - 230323
William East Perimeter Institute for Theoretical Physics
PIRSA:23030048 -
Strong Gravity Lecture - 230321
William East Perimeter Institute for Theoretical Physics
PIRSA:23030047 -
Strong Gravity Lecture - 230320
William East Perimeter Institute for Theoretical Physics
PIRSA:23030053 -
Strong Gravity Lecture - 230316
William East Perimeter Institute for Theoretical Physics
PIRSA:23030046 -
Strong Gravity Lecture - 230314
William East Perimeter Institute for Theoretical Physics
PIRSA:23030045
-
-
Talk
-
Particle Physics Lecture - 230331
Junwu Huang Perimeter Institute for Theoretical Physics
PIRSA:23030068 -
Particle Physics Lecture - 230329
Junwu Huang Perimeter Institute for Theoretical Physics
PIRSA:23030067 -
Particle Physics Lecture - 230327
Junwu Huang Perimeter Institute for Theoretical Physics
PIRSA:23030066 -
Particle Physics Lecture - 230324
Junwu Huang Perimeter Institute for Theoretical Physics
PIRSA:23030065 -
Particle Physics Lecture - 230322
Junwu Huang Perimeter Institute for Theoretical Physics
PIRSA:23030064 -
Particle Physics Lecture - 230320
Junwu Huang Perimeter Institute for Theoretical Physics
PIRSA:23030063 -
Particle Physics Lecture - 230315
PIRSA:23030061 -
-
-
Talk
-
Horizon entropy and the Einstein equation - Lecture 20230302
Ted Jacobson University of Maryland, College Park
-
Horizon entropy and the Einstein equation - Lecture 20230228
Ted Jacobson University of Maryland, College Park
-
Horizon entropy and the Einstein equation - Lecture 20230223
Ted Jacobson University of Maryland, College Park
-
Horizon entropy and the Einstein equation - Lecture 20230221
Ted Jacobson University of Maryland, College Park
-
-
Talk
-
-
-
Fitting models to data using Markov Chain Monte Carlo
Dustin Lang Perimeter Institute for Theoretical Physics
PIRSA:23010076 -
-
-
-
Topological quantum matter and quantum computing
Tsung-Cheng Lu (Peter) University of Maryland, College Park
PIRSA:23010084 -
Topological quantum matter and quantum computing
Tsung-Cheng Lu (Peter) University of Maryland, College Park
PIRSA:23010086
-
-
Talk
-
Numerical Methods Lecture - 230207
Erik Schnetter Perimeter Institute for Theoretical Physics
PIRSA:23020001 -
Numerical Methods Lecture - 230202
Erik Schnetter Perimeter Institute for Theoretical Physics
PIRSA:23020000 -
Numerical Methods Lecture - 230201
Erik Schnetter Perimeter Institute for Theoretical Physics
PIRSA:23020003 -
Numerical Methods Lecture - 230131
Erik Schnetter Perimeter Institute for Theoretical Physics
PIRSA:23010008 -
Numerical Methods Lecture - 230126
Erik Schnetter Perimeter Institute for Theoretical Physics
PIRSA:23010007 -
Numerical Methods Lecture - 230124
Erik Schnetter Perimeter Institute for Theoretical Physics
PIRSA:23010006 -
Numerical Methods Lecture - 230120
Erik Schnetter Perimeter Institute for Theoretical Physics
PIRSA:23010011 -
Numerical Methods Lecture - 230119
Erik Schnetter Perimeter Institute for Theoretical Physics
PIRSA:23010005
-
-
Talk
-
-
Talk
-
-
Causal Inference: Classical and Quantum
Can the effectiveness of a medical treatment be determined without the expense of a randomized controlled trial? Can the impact of a new policy be disentangled from other factors that happen to vary at the same time? Questions such as these are the purview of the field of causal inference, a general-purpose science of cause and effect, applicable in domains ranging from epidemiology to economics. Researchers in this field seek in particular to find techniques for extracting causal conclusions from statistical data. Meanwhile, one of the most significant results in the foundations of quantum theory—Bell’s theorem—can also be understood as an attempt to disentangle correlation and causation. Recently, it has been recognized that Bell’s result is an early foray into the field of causal inference and that the insights derived from almost 60 years of research on his theorem can supplement and improve upon state-of-the-art causal inference techniques. In the other direction, the conceptual framework developed by causal inference researchers provides a fruitful new perspective on what could possibly count as a satisfactory causal explanation of the quantum correlations observed in Bell experiments. Efforts to elaborate upon these connections have led to an exciting flow of techniques and insights across the disciplinary divide. This course will explore what is happening at the intersection of these two fields. zoom link: https://pitp.zoom.us/j/94143784665?pwd=VFJpajVIMEtvYmRabFYzYnNRSVAvZz09
-
Quantum Field Theory in Curved Spacetime
The course is an introduction to quantum field theory in curved spacetime. Upon building up the general formalism, the latter is applied to several topics in the modern theory of gravity and cosmology where the quantum properties of fundamental fields play an essential role.
Topics to be covered:
1) Radiation of particles by moving mirrors
2) Hawking radiation of black holes
3) Production of primordial density perturbations and gravity waves during inflation
4) Statistical properties of the primordial spectra
Required prior knowledge:
Foundations of quantum mechanics and general relativity -
Quantum Information (2022/2023)
We will review the notion of information in the most possible general sense. Then we will revisit our definitions of entropy in quantum physics from an informational point of view and how it relates to information theory and thermodynamics. We will discuss entanglement in quantum mechanics from the point of view of information theory, and how to quantify it and distinguish it from classical correlations. We will derive Bell inequalities and discuss their importance, and how quantum information protocols can use entanglement as a resource. We will introduce other notions of quantum correlations besides entanglement and what distinguishes them from classical correlations. We will also analyze measurement theory in quantum mechanics, the notion of generalized measurements and their importance in the processing and transmission of information. We will introduce the notions of quantum circuits and see some of the most famous algorithms in quantum information processing, as well as in quantum cryptography. We will end with a little introduction to the notions of relativistic quantum information and a discussion about quantum ethics.
-
Quantum Fields and Strings (2022/2023)
This survey course introduces three advanced topics in quantum fields and strings: anomalies, conformal field theory, and string theory. -
Machine Learning for Many-Body Physics (2022/2023)
This course is designed to introduce machine learning techniques for studying classical and quantum many-body problems encountered in quantum matter, quantum information, and related fields of physics. Lectures will emphasize relationships between statistical physics and machine learning. Tutorials and homework assignments will focus on developing programming skills for machine learning using Python.
-
Strong Gravity (2022/2023)
This course will introduce some advanced topics in general relativity related to describing gravity in the strong field and dynamical regime. Topics covered include properties of spinning black holes, black hole thermodynamics and energy extraction, how to define horizons in a dynamical setting, formulations of the Einstein equations as constraint and evolution equations, and gravitational waves and how they are sourced. -
Particle Physics (2022/2023)
This course will cover phenomenological studies and experimental searches for new physics beyond the Standard Model, including: natruralness, extra dimension, supersymmetry, dark matter (WIMPs and Axions), grand unification, flavour and baryogenesis. -
Horizon entropy and the Einstein equation
This mini-course of four lectures is an introduction, review, and critique of two approaches to deriving the Einstein equation from hypotheses about horizon entropy.
It will be based on two papers:
- "Thermodynamics of Spacetime: The Einstein Equation of State" arxiv.org/abs/gr-qc/9504004
- "Entanglement Equilibrium and the Einstein Equation" arxiv.org/abs/1505.04753
We may also discuss ideas in "Gravitation and vacuum entanglement entropy" arxiv.org/abs/1204.6349
Zoom Link: https://pitp.zoom.us/j/96212372067?pwd=dWVaUFFFc3c5NTlVTDFHOGhCV2pXdz09
-
Symmetries Graduate School 2023
The goal of this Winter School on Symmetries is to introduce graduate students to the effectiveness of symmetry principles across subjects and energy scales.
From Noether’s celebrated theorem to the development of the standard model of particle physics, from Landau’s to Wilson’s classification of phases of matter and phase transitions, symmetries have been key to 20th century physics. But in the last decades novel and more subtle incarnations of the symmetry principle have shown us the way to unlocking new and unexpected phases of quantum matter, infrared and holographic properties of the quantum gravitational interaction, as well as to advancements in pure mathematics to mention a few.
The Graduate Winter School on Symmetries will introduce students and young researchers to a variety of applications of the symmetry principle. These will be chosen across contemporary research topics in both theoretical physics and mathematics. Our goal is to create a synergistic environment where ideas and techniques can ultimately spread across disciplines. This will be achieved through a combination of mini-courses, colloquia, and discussion sessions led in collaboration with the students themselves.
https://pirsa.org/C23008
Territorial Land AcknowledgementPerimeter Institute acknowledges that it is situated on the traditional territory of the Anishinaabe, Haudenosaunee, and Neutral peoples.
Perimeter Institute is located on the Haldimand Tract. After the American Revolution, the tract was granted by the British to the Six Nations of the Grand River and the Mississaugas of the Credit First Nation as compensation for their role in the war and for the loss of their traditional lands in upstate New York. Of the 950,000 acres granted to the Haudenosaunee, less than 5 percent remains Six Nations land. Only 6,100 acres remain Mississaugas of the Credit land.
We thank the Anishinaabe, Haudenosaunee, and Neutral peoples for hosting us on their land.
-
Numerical Methods (2022/2023)
This course teaches basic numerical methods that are widely used across many fields of physics. The course is based on the Julia programming language. Topics include an introduction to Julia, linear algebra, Monte Carlo methods, differential equations, and are based on applications by researchers at Perimeter. The course will also teach principles of software engineering ensuring reproducible results. -
Mathematical Physics (2022/2023)
This course will cover the mathematical structure underlying classical gauge theory. Previous knowledge of differential geometry is not required. Topics covered in the course include: introduction to manifolds, symplectic manifolds, introduction to Lie groups and Lie algebras; deformation quantisation and geometric quantisation; the matematical structure of field theories; scalar field theory; geometric picture of Yang-Mills theory; symplectic reduction. If time permits, we may also look at the description of gauge theory in terms of principal bundles and the topological aspects of gauge theory. -
Standard Model (2022/2023)
Topics will include: Non-abelian gauge theory (aka Yang-Mills theory), the Standard Model (SM) as a particular non-abelian gauge theory (its gauge symmetry, particle content, and Lagrangian, Yukawa couplings, CKM matrix, 3 generations), spontaneous symmetry breaking: global vs local symmetries (Goldstone's Theorem vs Higgs Mechanism; mass generation for bosons and fermions), neutrino sector (including right-handed neutrinos?), effective field theory, Feynman rules (Standard Model propagators and vertices), gauge and global anomalies, strong CP problem, renormalization group (beta functions, asymptotic freedom, quark confinement, mesons, baryons, Higgs instability, hierarchy problem), unexplained puzzles in the SM, and surprising/intriguing aspects of SM structure that hint at a deeper picture.