Recent searches for a first-generation leptoquark by the CMS collaboration have shown around 2.5 sigma deviations from Standard Model predictions in both the eejj and e nu jj channels. Furthermore, the eejj invariant mass distribution has another 2.8 sigma excess from the CMS right-handed W plus heavy neutrino search. We point out that additional leptoquark production from a heavy coloron decay can provide a good explanation for all three excesses. The coloron has a mass around 2.1 TeV and the leptoquark mass can vary from 550 GeV to 650 GeV. A key prediction of this model is an edge in the total m_T distribution of e nu jj events at around 2.1 TeV.
We construct the gravity duals of large N supersymmetric gauge theories on a squashed five-sphere. They are constructed in Euclidean Romans F(4) gauged supergravity in six-dimensions. We find a one- as well as a two-parameter family of solutions and evaluate the renormalised on-shell and fundamental string action for these solutions to find precise agreement with gauge theory.
The theory of quantum electrodynamics is recognized for the most accurate predictions in physics confirmed by experiment. I review the recent results on high precision tests of QED with an emphasize on the study of the positronium bound state.