Quantum spin liquids (QSL) are enigmatic phases of matter characterized by the absence of symmetry breaking and the presence of fractionalized quasiparticles. While theories for QSLs are now in abundance, tracking them down in real materials has turned out to be remarkably tricky. I will focus on two sets of studies on QSLs in three dimensional pyrochlore systems, which have proven to be particularly promising. In the first work, we analyze the newly discovered spin-1 pyrochlore compound NaCaNi2F7 whose properties we find to be described by a nearly idealized Heisenberg Hamiltonian [1]. We study its dynamical structure factor using molecular dynamics simulations, stochastic dynamical theory, and linear spin wave theory, all of which reproduce remarkably well the momentum dependence of the experimental inelastic neutron scattering intensity as well as its energy dependence (with the exception of the lowest energies) [2]. We apply many of the lessons learnt to Ce2Zr2O7 which has been recently shown to exhibit strong signatures of QSL behavior in neutron scattering experiments. Its magnetic properties emerge from interacting cerium ions, whose ground state doublet (with J = 5/2,m_J = ±3/2) arises from strong spin orbit coupling and crystal field effects. With the help of finite temperature Lanczos calculations, we determine the low energy effective spin-1/2 Hamiltonian parameters using which we reproduce all the prominent features of the dynamical spin structure factor. These parameters suggest the realization of a U(1) π-flux QSL phase [3] and they allow us to make predictions for responses in an applied magnetic field that highlight the important role played by octupoles in the disappearance of spectral weight.
*Supported by FSU and NHMFL, funded by NSF/DMR-1644779 and the State of Florida, and NSF DMR-2046570
[1] K. W. Plumb, H. J. Changlani, A. Scheie, S. Zhang, J. W. Krizan, J. A. Rodriguez-Rivera, Yiming Qiu, B. Winn, R. J. Cava & C. L. Broholm, Nature Physics 15, 54–59 (2019)
[2] S. Zhang, H. J. Changlani, K. W. Plumb, O. Tchernyshyov, and R. Moessner, Phys. Rev. Lett. 122, 167203 (2019)
[3] A.Bhardwaj, S.Zhang, H.Yan, R. Moessner, A. H. Nevidomskyy, H. J. Changlani, arXiv:2108.01096 (2021), under review.
I will connect approaches to classical integrable systems via 4d Chern-Simons theory and via symmetry reductions of the anti-self-dual Yang-Mills equations. In particular, I will consider holomorphic Chern-Simons theory on twistor space, defined using a range of meromorphic (3,0)-forms. On shell these are, in most cases, found to agree with actions for anti-self-dual Yang-Mills theory on space-time. Under symmetry reduction, these space-time actions yield actions for 2d integrable systems. On the other hand, performing the symmetry reduction directly on twistor space reduces the holomorphic Chern-Simons action to 4d Chern-Simons theory.
Many cosmological scenarios beyond the Standard Model lead to the formation of a network of cosmic strings. In this talk, I will review how these models lead in a natural way to the production of a stochastic gravitational wave background and how this signal could account for the recently reported results from the NANOGrav collaboration. Finally, we will explain how future observations could allow us to confirm this interpretation of the NANOGrav data.