There is a well-known discrepancy in mathematical fluid mechanics between phenomena that we can observe and phenomena on which we have theorems. The challenge for the mathematician is then to formulate an existence theory of solutions to the equations of hydrodynamics which is able to reflect observation. The most important such observation, forming the backbone of turbulence theory, is anomalous dissipation. In the talk, we survey some of the recent developments concerning weak solutions in this context.
We say that an ordinary or partial differential equation is regularized by noise if the addition of a suitable noise term restores well-posedness or improves regularity of the solution to the equation. Regularization by noise is by now well understood for ODEs and linear transport-type PDEs, but it is less understood for nonlinear PDEs like Euler and Navier-Stokes equations, with many open questions.
In the first part of this series of lectures, we consider the case of ODEs and associated transport equations with irregular drift: we show that the addition of an additive Brownian noise restores well-posedness of the ODE; we introduce the corresponding transport noise and show that this noise restores well-posedness for the associated transport equation. In the second part, we focus our attention on the effect of a particular transport-type noise, which is divergence-free, Gaussian, white in time and poorly correlated in space (nonsmooth Kraichnan noise). The associated linear transpo...
In the recent resolution of the strong Onsager’s conjecture in L^3 framework, so-called wavelet-inspired Nash’s iteration has been developed. In this lecture, we will sketch this new method and provide the necessary background. The lecture will be based on our recent joint work with Matthew Novack.