The Moore-Tachikawa conjecture posits the existence of certain 2-dimensional topological quantum field theories (TQFTs) valued in a category of complex Hamiltonian varieties. Previous work by Ginzburg-Kazhdan and Braverman-Nakajima-Finkelberg has made significant progress toward proving this conjecture. In this talk, I will introduce a new approach to constructing these TQFTs using the framework of shifted symplectic geometry. This higher version of symplectic geometry, initially developed in derived algebraic geometry, also admits a concrete differential-geometric interpretation via Lie groupoids and differential forms, which plays a central role in our results. It provides an algebraic explanation for the existence of these TQFTs, showing that their structure comes naturally from three ingredients: Morita equivalence, as well as multiplication and identity bisections in abelian symplectic groupoids. It also allows us to generalize the Moore-Tachikawa TQFTs in various directions, raising interesting questions in Lie theory and Poisson geometry. This is joint work with Peter Crooks.
Airy_1 and Airy_2 processes are stationary stochastic processes on the real line that arise in various contexts in integrable probability. In particular, they are obtained as scaling limits of passage time profiles in planar exponential last passage percolation (LPP) models with different initial conditions. In this talk, we shall present law of fractional logarithms with optimal constants for maxima and minima of Airy processes over growing intervals, extending and complementing the work of Pu. We draw upon the recently established sharp tail estimates for various passage times in exponential LPP by Baslingker et al., as well as geometric properties of exponential LPP landscape. The talk is based on a recent work with Riddhipratim Basu
(https://doi.org/10.48550/arXiv.2406.11826).
Our Cosmological Standard Model, LambdaCDM, is a remarkable success story. It describes our Universe’s evolution from the Big Bang until today in terms of only a small handful of parameters. Despite its many successes, LambdaCDM is not a fundamental theory. In particular, the microscopic origin of dark matter and dark energy remain among the greatest puzzles in modern physics. Of the two, dark energy poses a particularly vexing challenge, as we lack an understanding of the smallness of its value. At the same time, over the last decade, observations have revealed further cracks in the LambdaCDM model, manifesting as discrepancies between early and late universe determinations of its parameters.
In this lecture, I will first review the LambdaCDM model and establish why it is considered our best model of the Universe. In the second part, I will discuss the intriguing possibility that the cosmic tensions, referring to the observational and theoretical challenges mentioned above, are...
We will present a method for computing the stationary measures of integrable probabilistic systems on finite domains. Focusing on the example of a well-studied model called last passage percolation, we will describe the stationary measure in various ways, and emphasize the key role played by Schur symmetric functions. The method works as well for other models and their associated families of symmetric functions, suchas Whittaker functions or Hall-Littlewood polynomials. We will also discuss how this is related to the traditional approach for computing stationary measures of interacting particle systems between boundary reservoirs: the matrix product ansatz.
A colored vertex model is a solution of the Yang--Baxter equation based on a higher-rank Lie algebra. These models generalize the famous six-vertex model, which may be viewed in terms of osculating lattice paths, to ensembles of colored paths. By studying certain partition functions within these models, one may define families of multivariate rational functions (or polynomials) with remarkable algebraic features. In these lectures, we will examine a number of these properties:
(a) Exchange relations under the Hecke algebra;
(b) Infinite summation identities of Cauchy-type;
(c) Orthogonality with respect to torus scalar products;
(d) Multiplication rules (combinatorial formulae for structure constants).
Our aim will be to show that all such properties arise very naturally within the algebraic framework provided by the vertex models. If time permits, applications to probability theory will be surveyed.
The magnetohydrodynamics (1 + 1) dimension equation, with a force and force-free term, is analysed with respect to its point symmetries. Interestingly, it reduces to an Abel’s Equation of the second kind and, under certain conditions, to equations specified in Gambier’s family. The symmetry analysis for the force-free term leads to Euler’s Equation and to a system of reduced second-order odes for which singularity analysis is performed to determine their integrability.
In this talk I will try to describe how the interplay between the system environment coupling and external driving frequency shapes the dynamical properties and steady state behavior in a periodically driven transverse field Ising chain subject to measurement. I will describe fate of the steady state entanglement scaling properties as a result of measurement induced phase transition. I will briefly explain how such steady state entanglement scaling can be exactly computed using asymptotic analysis of the determinant of associated correlation matrix which turned out to be of block Toeplitz form. I will try to point out the differences from the Hermitian systems in understanding entanglement scaling behaviour in regimes where the asymptotic analysis can be performed using Fisher-Hartwig conjecture. I will end the talk with some open questions in this direction.