Format results
Adventures with Superstrings
Robert Myers Perimeter Institute for Theoretical Physics
PSI Course - Welcome
-
John Berlinsky McMaster University
-
Kari Dalnoki-Veress McMaster University
PIRSA:09080034-
Jordan algebras and spectrality as tools for axiomatic characterization
Howard Barnum University of New Mexico
Quantum Bayesian: Pros and Cons
Christopher Timpson University of Oxford
Demarcating probability theories by their degree of agent-dependency
Jochen Rau Goethe University Frankfurt
Operational structures and Natural Postulates for Quantum Theory
Lucien Hardy Perimeter Institute for Theoretical Physics
What's Blowing up the Universe?
Mark Wyman PDT Partners LLC
The reason cosmologists have a job is that the Universe as a whole -- the stuff between planets and stars and galaxies -- is, despite first appearances, a pretty interesting place. The strangest fact about it is that it's expanding, and always has been, as far as we know (and though Einstein's theory of gravity predicts this, Albert himself didn't much care for the idea, at least at first). After about seventy years -- it was discovered in 1929 -- this expansion was kind of old hat, but then new observations came around that shattered the old complacency. The old idea was that the Universe was expanding, but slowing down as it went -- since gravity, as far as anyone knew, could only cause attractive forces. What the new observations demonstrated is that the Universe's expansion is, in fact, accelerating -- getting faster with time. This is so shocking that most astronomers and cosmologists couldn't believe it at first, and some still don't. In this talk, I'll explain a bit about how we know this, why it's so shocking, and tell you something about the crazy ideas people at Perimeter have for what's going on.Quantum 4
Richard Epp University of Waterloo
PIRSA:09080053Classical physics of a spinning bar magnet in an external magnetic field: energy, angular momentum, torque and its effect on angular momentum, and precession. Application to NMR (Nuclear Magnetic Resonance). The peculiar physics and mathematics of quantum mechanical spin: quantization of spin and superposition of spin states. Application of quantum mechanical spin and NMR to quantum computing..Adventures with Superstrings
Robert Myers Perimeter Institute for Theoretical Physics
Physics emerged from the twentieth century with two remarkably successful descriptions of nature which stand in striking contrast. Quantum mechanics describes the subatomic realm with intrinsic uncertainties and probabilities. On the other hand, Einstein's general relativity describe gravitational phenomena in an exacting geometric arena. Theoretical physicists have struggled for over fifty years trying to combine these views in a single unified framework. More recently, superstring theory has drawn a huge amount of interest as a leading contender to provide such a unification. Superstring theory is a theory of strings, branes, extra spacetime dimensions and much more. In my lecture, I will try to give a flavour for what superstring theory is all about and why physicists, like myself, continue to be so excited about this, perhaps the final theory.An Introduction to Quantum Information
Sonia Markes QED Consulting
A game that illustrates that quantum theory requires non-locality; an overview of the concept and basic mathematics of entanglement; and the concept of spin introduced via a Stern Gerlach set-up.PSI Course - Welcome
-
John Berlinsky McMaster University
-
Kari Dalnoki-Veress McMaster University
PIRSA:09080034-
Jordan algebras and spectrality as tools for axiomatic characterization
Howard Barnum University of New Mexico
The normalized-state spaces of finite-dimensional Jordan algebras constitute a relatively narrow class of convex sets that includes the finite-dimensional quantum mechanical and classical state spaces. Several beautiful mathematical characterizations of Jordan statespaces exist, notably Koecher's characterization as the bases of homogeneous self-dual cones, and Alfsen and Shultz's characterization based on the notion of spectral convex sets plus additional axioms. I will review the notion of spectral convex set and the Alfsen-Shultz characterization and discuss how these mathematical characterizationsof Jordan state spaces might be useful in developing accounts of quantum theory based on more operational principles, for example ones concerning information processing. If time permits, I will present joint work with Cozmin Ududec in which we define analogues of multiple-slit experiments in systems described by spectral convex state spaces, and obtain results on Sorkin's notion of higher-level interference in this setting. For example, we show that, like the finite-dimensional quantum systems which are a special case, Jordan state spaces exhibit only lowest-order (I_2 in Sorkin's hierarchy) interference.Quantum Bayesian: Pros and Cons
Christopher Timpson University of Oxford
The Quantum Bayesianism of Caves, Fuchs and Schack presents a distinctive starting point from which to attack the problem of axiomatising - or re-constructing - quantum theory. However, many have had the doubt that this starting point is itself already too radical. In this talk I will briefly introduce the position (it will be familiar to most, no doubt) and describe what I take to be its philosophical standpoint. More importantly, I shall seek to defend it from some bad objections, before going on to level some more substantive challenges. The background paper is: 0804.2047 on the arXiv.Candidates for Principles of Quantumness
Quantum Mechanics (QM) is a beautiful simple mathematical structure--- Hilbert spaces and operator algebras---with an unprecedented predicting power in the whole physical domain. However, after more than a century from its birth, we still don't have a "principle" from which to derive the mathematical framework. The situation is similar to that of Lorentz transformations before the advent of the relativity principle. The invariance of the physical law with the reference system and the existence of a limiting velocity, are not just physical principles: they are mandatory operational principles without which one cannot do experimental Physics. And it is a very seductive idea to think that QM could be derived from some other principle of such epistemological kind, which is either indispensable or crucial in dramatically reducing the experimental complexity. Indeed, the large part of the formal structure of QM is a set of formal tools for describing the process of gathering information in any experiment, independently on the particular physics involved. It is mainly a kind of "information theory", a theory about our knowledge of physical entities rather than about the entities themselves. If we strip off such informational part from the theory, what would be left should be a "principle of the quantumness" from which QM should be derived. In my talk I will analyze the consequences of two possible candidates for the principle of quantumness: 1) PFAITH: the existence of a pure bipartite state by which we can calibrate all local tests and prepare all bipartite states by local tests; 2) PURIFY: the existence of a purification for all states. We will consider the two postulates within the general context of probabilistic theories---also called test-theories. Within test-theories we will introduce the notion of "time-cascade" of tests, which entails the identifications "events=transformations" and "evolution=conditioning", and derive the general matrix-algebra representation of such theories, with particular focus on theories that satisfy the "local discriminability principle". Some of the concepts will be illustrated in some specific test-theories, including the usual cases of classical and quantum mechanics, the extended versions of the PR boxes, the so-called "spin-factors", and quantum mechanics on a real (instead of complex) Hilbert spaces. After the brief tutorial on test-theories, I will analyze all the consequences of the two candidate postulates. We will see how postulate PFAITH implies the "local observability principle" and the tensor-product structure for the linear spaces of states and effects, along with a remarkable list of additional features that are typically quantum, including purification for some states, the impossibility of bit commitment, and many others. We will see how the postulate is not satisfied by classical mechanics, and a stronger version of the postulate also exclude theories where we cannot have teleportation, e.g. PR-boxes. Finally we will analyze the consequences of postulate PURIFY, and show how it is equivalent to the possibility of dilating any probabilistic transformation on a system to a deterministic invertible transformation on the system interacting with an ancilla. Therefore PURIFY is equivalent to the general principle that "every transformation can be in-principle inverted, having sufficient control on the environment". Using a simple diagrammatic representation we will see how PURIFY implies general theorems as: 1) deterministic full teleportation; 2) inverting a transformation upon an input state (i.e. error-correction) is equivalent to the fact that environment and reference remain uncorrelated; 3) inverting some transformations by reading the environment; etc. We will see that some non-quantum theories (e.g. QM on real Hilbert spaces) still satisfy PURIFY. Finally I will address the problem on how to prove that a test-theory is quantum. One would need to show that also the "effects" of the theory---not just the transformations---make a matrix algebra. A way of deriving the "multiplication" of effects is to identify them with atomic events. This can be done assuming the atomicity of evolution in conjunction with the Choi-Jamiolkowski isomorphism. Suggested readings: 1. arXiv:0807.4383, to appear in "Philosophy of Quantum Information and Entanglement", Eds A. Bokulich and G. Jaeger (Cambridge University Press, Cambridge UK, in press) 2. G. Chiribella, G. M. D'Ariano, and P. Perinotti (in preparation) 3. G. M. D'Ariano, A. Tosini (in preparationDemarcating probability theories by their degree of agent-dependency
Jochen Rau Goethe University Frankfurt
Recent advances in quantum computation and quantum information theory have led to revived interest in, and cross-fertilisation with, foundational issues of quantum theory. In particular, it has become apparent that quantum theory may be interpreted as but a variant of the classical theory of probability and information. While the two theories may at first sight appear widely different, they actually share a substantial core of common properties; and their divergence can be reduced to a single attribute only, their respective degree of agent-dependency. I propose a mathematical description for this ?degree of agent-dependency? and show how assuming different values allows one to derive the classical and the quantum case from their common core. Finally, I explore ? and eventually dismiss ? the possibility that beyond quantum theory there might be other variants of classical probability theory that are relevant to physics.A reconstruction of quantum mechanics from quantum logics with unique conditional probabilities
Gerd Niestegge University of Münster
The starting point of the reconstruction process is a very simple quantum logical structure on which probability measures (states) and conditional probabilities are defined. This is a generalization of Kolmogorov's measure-theoretic approach to probability theory. In the general framework, the conditional probabilities need neither exist nor be uniquely determined if they exist. Postulating their existence and uniqueness becomes the major step in the reconstruction process. A certain new mathematical structure can then be derived, and examples immediately reveal that probability conditionalization is identical with the Lüders - von Neumann measurement process. Some further postulates bring us to Jordan algebras, and the consideration of composite systems finally shows why these algebras must be the self-adjoint parts of von Neumann algbras such that they can be represented as linear operators on Hilbert spaces over the complex numbers. This is why the approach gets ahead of other ones that are not able to justify the need for the complex Hilbert space or the Jordan operator algebras. The mathematical structure of quantum mechanics can thus be reconstructed from a few probabilistic basic principles and becomes a non-Boolean extension of classical probability theory. Its link to physics is that probability conditionalization in this structure is identical with the Lüders - von Neumann measurement process.Operational structures and Natural Postulates for Quantum Theory
Lucien Hardy Perimeter Institute for Theoretical Physics
In this talk we provide four postulates that are more natural than the usual postulates of QT. The postulates require the predefinition of two integers, K and N, for a system. K is the number of probabilities that must be listed to specify the state. N is the maximum number of states that can be distinguished in a single shot measurement and consequently log N is the information carrying capacity. The postulates areP1 Information: Systems having, or constrained to have, a given information carrying capacity have the same properties.
P2 Composites: For a composite system, AB, we have N_AB=N_A N_B and K_AB=K_A K_B.
P3 Continuity: There exists a continuous reversible transformation between any two pure states.
P4 Simplicity: For each N, K takes the smallest value consistent with the other postulates.
Note that P2 is equivalent to requiring that information carrying capacity be additive and that the state of a composite system can be determined by measurements on the components alone (local tomography is possible). We can prove a reconstruction theorem: the standard formalism of QT (for finite N) follows from these postulates. This includes the properties that quantum states can be represented by density operators on a complex Hilbert space, evolution is given by completely positive maps (of which unitary evolution is a special case), and that composite systems are formed using the tensor product. We derive the Born rule (or, equivalently, the trace rule) for calculating probabilities. If the single word “continuous” is dropped from P3 the postulates are consistent with both Classical Probability Theory and Quantum Theory. In this talk we will place particular emphasis on laying the operational foundations for such postulates. Then we will provide some highlights of the proof. Finally we will speculate on what needs to be changed for a theory of quantum gravity.