The observation of the Cosmic Microwave Background (CMB) is a powerful probe to unravel many mysteries of the late-time Universe. During the first half of the talk, I will discuss how future low-noise and high-resolution CMB experiments can be used to probe the detailed physics of reionization, constraining the morphology, shape, and temperature of ionized bubbles. Furthermore, I will talk about the prospects of LSS x CMB to understand the thermodynamic properties of gas in the halos. In the second part of my talk, I will also talk about "line intensity mapping", a novel technique that will provide us with new information from the star formation in galaxies to the expansion of our Universe. Mentioning the viable challenges, I will discuss the estimators to extract the signal in the presence of interlopers and instrumental noise. I will also describe how the MLIM could help us to perform cross-correlations with complementary probes such as CMB lensing and galaxy field. In the end, I will present the constraints on astrophysical and cosmological parameters that we hope to achieve from future intensity mapping observations.