PIRSA:20010092

A bulk-boundary correspondence with factorization algebras

APA

Gwilliam, O. (2020). A bulk-boundary correspondence with factorization algebras. Perimeter Institute for Theoretical Physics. https://pirsa.org/20010092

MLA

Gwilliam, Owen. A bulk-boundary correspondence with factorization algebras. Perimeter Institute for Theoretical Physics, Jan. 09, 2020, https://pirsa.org/20010092

BibTex

          @misc{ scivideos_PIRSA:20010092,
            doi = {10.48660/20010092},
            url = {https://pirsa.org/20010092},
            author = {Gwilliam, Owen},
            keywords = {Mathematical physics},
            language = {en},
            title = {A bulk-boundary correspondence with factorization algebras},
            publisher = {Perimeter Institute for Theoretical Physics},
            year = {2020},
            month = {jan},
            note = {PIRSA:20010092 see, \url{https://scivideos.org/index.php/pirsa/20010092}}
          }
          

Owen Gwilliam University of Massachusetts Amherst

Talk numberPIRSA:20010092
Source RepositoryPIRSA

Abstract

Factorization algebras provide a flexible language for describing the observables of a perturbative QFT, as shown in joint work with Kevin Costello. In joint work with Eugene Rabinovich and Brian Williams, we extend those constructions to a manifold with boundary for a special class of theories that includes, as an example, a perturbative version of the correspondence between chiral U(1) currents on a Riemann surface and abelian Chern-Simons theory on a bulk 3-manifold. Given time, I'll sketch a systematic higher dimensional version for higher abelian CS theory on an oriented smooth manifold of dimension 4n+3 with boundary a complex manifold of complex dimension 2n+1. (This talk will be very informal.)