PIRSA:19120027

Levitating microdiamonds towards testing the macroscopic limits of the quantum superposition principle

APA

Morley, G. (2019). Levitating microdiamonds towards testing the macroscopic limits of the quantum superposition principle . Perimeter Institute for Theoretical Physics. https://pirsa.org/19120027

MLA

Morley, Gavin. Levitating microdiamonds towards testing the macroscopic limits of the quantum superposition principle . Perimeter Institute for Theoretical Physics, Dec. 10, 2019, https://pirsa.org/19120027

BibTex

          @misc{ scivideos_PIRSA:19120027,
            doi = {10.48660/19120027},
            url = {https://pirsa.org/19120027},
            author = {Morley, Gavin},
            keywords = {Quantum Foundations, Quantum Gravity, Quantum Information},
            language = {en},
            title = {Levitating microdiamonds towards testing the macroscopic limits of the quantum superposition principle },
            publisher = {Perimeter Institute for Theoretical Physics},
            year = {2019},
            month = {dec},
            note = {PIRSA:19120027 see, \url{https://scivideos.org/index.php/pirsa/19120027}}
          }
          

Gavin Morley University of Warwick

Talk numberPIRSA:19120027
Source RepositoryPIRSA

Abstract

We are building an experiment in which a levitated 1 µm diamond containing a nitrogen vacancy (NV) centre would be put into a spatial quantum superposition [1-3]. This would be able to test theories of spontaneous wavefunction collapse [4]. We have helped theory collaborators to propose how to do this experiment [5-9], as well as a much more experimentally ambitious extension which would test if gravity permits a quantum superposition [10]. There are related proposals from other groups [11-13]. [1] A. T. M. A. Rahman, A. C. Frangeskou, M. S. Kim, S. Bose, G. W. Morley & P. F. Barker, Sci. Rep. 6, 21633 (2016). [2] A. T. M. A. Rahman, A. C. Frangeskou, P. F. Barker & G. W. Morley, Rev. Sci. Instrum. 89, 023109 (2018). [3] A. C. Frangeskou, A. T. M. A. Rahman, L. Gines, S. Mandal, O. A. Williams, P. F. Barker & G. W. Morley, NJP 20, 043016 (2018). [4] A. Bassi, K. Lochan, S. Satin, T. P. Singh & H. Ulbricht, Rev. Mod. Phys. 85, 471 (2013). [5] S. Bose & G. W. Morley, arXiv:1810.07045 (2018). [6] M. Scala, M. S. Kim, G. W. Morley, P. F. Barker & S. Bose, PRL 111, 180403 (2013). [7] C. Wan, M. Scala, G. W. Morley, A. T. M. A. Rahman, H. Ulbricht, J. Bateman, P. F. Barker, S. Bose & M. S. Kim, PRL 117, 143003 (2016). [8] R. J. Marshman, A. Mazumdar, G. W. Morley, P. F. Barker, H. Steven & S. Bose, arXiv:1807.10830 (2018). [9] J. S. Pedernales, G. W. Morley & M. B. Plenio, arXiv:1906.00835 (2019). [10] S. Bose, A. Mazumdar, G. W. Morley, H. Ulbricht, M. Toroš, M. Paternostro, A. A. Geraci, P. F. Barker, M. S. Kim & G. Milburn, PRL 119, 240401 (2017). [11] Z.-q. Yin, T. Li, X. Zhang & L. M. Duan, PRA 88, 033614 (2013). [12] A. Albrecht, A. Retzker & M. B. Plenio, PRA 90, 033834 (2014). [13] C. Marletto & V. Vedral, PRL 119, 240402 (2017).