PIRSA:19070003

Deep learning for quantum many-body physics or: Toolmaking beyond the papyrus complexity

APA

Carleo, G. (2019). Deep learning for quantum many-body physics or: Toolmaking beyond the papyrus complexity . Perimeter Institute for Theoretical Physics. https://pirsa.org/19070003

MLA

Carleo, Giuseppe. Deep learning for quantum many-body physics or: Toolmaking beyond the papyrus complexity . Perimeter Institute for Theoretical Physics, Jul. 08, 2019, https://pirsa.org/19070003

BibTex

          @misc{ scivideos_PIRSA:19070003,
            doi = {10.48660/19070003},
            url = {https://pirsa.org/19070003},
            author = {Carleo, Giuseppe},
            keywords = {Quantum Matter},
            language = {en},
            title = {Deep learning for quantum many-body physics or: Toolmaking beyond the papyrus complexity },
            publisher = {Perimeter Institute for Theoretical Physics},
            year = {2019},
            month = {jul},
            note = {PIRSA:19070003 see, \url{https://scivideos.org/index.php/pirsa/19070003}}
          }
          

Giuseppe Carleo ETH Zurich

Talk numberPIRSA:19070003
Source RepositoryPIRSA
Talk Type Conference

Abstract

In this talk I will discuss some of the long-term challenges emerging with the effort of making deep learning a relevant tool for controlled scientific discovery in many-body quantum physics. The current state of the art of deep neural quantum states and learning tools will be discussed in connection with open challenging problems in condensed matter physics, including frustrated magnetism and quantum dynamics.