In this talk I discuss the problem of introducing dynamics for holographic codes. To do this it is necessary to take a continuum limit of the holographic code. As I argue, a convenient kinematical continuum limit space is given by Jones’ semicontinuous limit. Dynamics are then furnished by a unitary representation of a discrete analogue of the conformal group known as Thompson’s group T. I will describe these representations in detail in the simplest case of a discrete AdS geometry modelled by trees. Consequences such as the ER=EPR argument are then realised in this setup. Extensions to more general tessellations with a MERA structure are possible, and will be (very) briefly sketched.