PIRSA:17040025

SU(3) Landau-Zener-Stueckelberg-Majorana interferometry with quantum triangles

APA

Kenmoe, M. (2017). SU(3) Landau-Zener-Stueckelberg-Majorana interferometry with quantum triangles. Perimeter Institute for Theoretical Physics. https://pirsa.org/17040025

MLA

Kenmoe, Maseim. SU(3) Landau-Zener-Stueckelberg-Majorana interferometry with quantum triangles. Perimeter Institute for Theoretical Physics, Apr. 04, 2017, https://pirsa.org/17040025

BibTex

          @misc{ scivideos_PIRSA:17040025,
            doi = {10.48660/17040025},
            url = {https://pirsa.org/17040025},
            author = {Kenmoe, Maseim},
            keywords = {Quantum Matter},
            language = {en},
            title = {SU(3) Landau-Zener-Stueckelberg-Majorana interferometry with quantum triangles},
            publisher = {Perimeter Institute for Theoretical Physics},
            year = {2017},
            month = {apr},
            note = {PIRSA:17040025 see, \url{https://scivideos.org/index.php/pirsa/17040025}}
          }
          

Maseim Kenmoe University of Regensburg

Talk numberPIRSA:17040025
Source RepositoryPIRSA
Collection

Abstract

Quantum triangles can work as interferometers. Depending on their geometric size and interactions between paths, “beats” and/or “steps”

patterns are observed. We show that when inter-level distances between level positions in quantum triangles periodically change with time, formation of beats and/or steps no longer depends only on the geometric size of the triangles but also on the characteristic frequency of the transverse signal. For large-size triangles, we observe the coexistence of beats and steps for moderated frequencies of the signal and for large frequencies a maximum of four steps instead of two as in the case with constant interactions are observed.

Small-size triangles also revealed counter-intuitive interesting dynamics for large frequencies of the field: unexpected two-step patterns are observed. When the frequency is large and tuned such that it matches the uniaxial anisotropy, three-step patterns are observed.

We have equally observed that when the transverse signal possesses a static part, steps maximize to six. These effects are semi-classically explained in terms of Fresnel integrals and quantum mechanically in terms of quantized fields with a photon-induced tunneling process. Our expressions for populations are in excellent agreement with the gross temporal profiles of exact numerical solutions. We compare the semi-classical and quantum dynamics in the triangle and establish the conditions for their equivalence.