PIRSA:16040082

On the stable homotopy theory of stacks and elliptic cohomology

APA

Gepner, D. (2016). On the stable homotopy theory of stacks and elliptic cohomology. Perimeter Institute for Theoretical Physics. https://pirsa.org/16040082

MLA

Gepner, David. On the stable homotopy theory of stacks and elliptic cohomology. Perimeter Institute for Theoretical Physics, Apr. 21, 2016, https://pirsa.org/16040082

BibTex

          @misc{ scivideos_PIRSA:16040082,
            doi = {10.48660/16040082},
            url = {https://pirsa.org/16040082},
            author = {Gepner, David},
            keywords = {Mathematical physics},
            language = {en},
            title = {On the stable homotopy theory of stacks and elliptic cohomology},
            publisher = {Perimeter Institute for Theoretical Physics},
            year = {2016},
            month = {apr},
            note = {PIRSA:16040082 see, \url{https://scivideos.org/index.php/pirsa/16040082}}
          }
          

David Gepner Purdue University

Talk numberPIRSA:16040082
Talk Type Conference

Abstract

In this talk, we'll discuss what it means to be a cohomology theory for topological stacks, using a notion of local symmetric monoidal inversion of objects in families. While the general setup is abstract, it specializes to many cases of interest, including Schwede's global spectra. We will then go on to discuss various examples with particular emphasis on elliptic cohomology. It turns out that TMF sees more objects as dualizable (or even invertible) than one might naively expect.