The simplest flux compactifications are highly symmetric—a q-form flux is wrapped uniformly around an extra-dimensional q-sphere. I will discuss a family of solutions that break the internal SO(q+1) symmetry of these solutions down to SO(q)×Z_2, and show that often at least one of them has lower vacuum energy, larger entropy, and is more stable than the symmetric solution. I will describe the phase diagram of lumpy solutions and provide an interpretation in terms of an effective potential. Finally, I will provide evidence that the perturbatively stable vacua have a non-perturbative instability to spontaneously sprout lumps; generically this new decay is exponentially faster than all other known decays of the model.