I will discuss a class of limiting points in the moduli space of d=2
(2,2) superconformal field theories. These SCFTs arise as IR limits of
"hybrid" UV theories constructed as a fibration of a Landau-Ginzburg
theory over a base Kaehler geometry. A significant generalization of
Landau-Ginzburg and large radius geometric limit points, the hybrid
theories can be used to probe general features of (2,2) and (0,2) SCFT
moduli spaces.