PIRSA:11040113

Entanglement spectrum and boundary theories with projected entangled-pair states

APA

Cirac, I. (2011). Entanglement spectrum and boundary theories with projected entangled-pair states. Perimeter Institute for Theoretical Physics. https://pirsa.org/11040113

MLA

Cirac, Ignacio. Entanglement spectrum and boundary theories with projected entangled-pair states. Perimeter Institute for Theoretical Physics, Apr. 13, 2011, https://pirsa.org/11040113

BibTex

          @misc{ scivideos_PIRSA:11040113,
            doi = {10.48660/11040113},
            url = {https://pirsa.org/11040113},
            author = {Cirac, Ignacio},
            keywords = {Quantum Information},
            language = {en},
            title = {Entanglement spectrum and boundary theories with projected entangled-pair states},
            publisher = {Perimeter Institute for Theoretical Physics},
            year = {2011},
            month = {apr},
            note = {PIRSA:11040113 see, \url{https://scivideos.org/index.php/pirsa/11040113}}
          }
          

Ignacio Cirac Max Planck Institute for Gravitational Physics - Albert Einstein Institute (AEI)

Talk numberPIRSA:11040113
Source RepositoryPIRSA

Abstract

In many physical scenarios, close relations between the bulk properties of quantum systems and theories associated to their boundaries have been observed. In this work, we provide an exact duality mapping between the bulk of a quantum spin system and its boundary using Projected Entangled Pair States (PEPS). This duality associates to every region a Hamiltonian on its boundary, in such a way that the entanglement spectrum of the bulk corresponds to the excitation spectrum of the boundary Hamiltonian. We study various specific models, like a deformed AKLT , an Ising-type , and Kitaev's toric code, both in finite ladders and infinite square lattices. In the latter case, some of those models display quantum phase transitions. We find that a gapped bulk phase with local order corresponds to a boundary Hamiltonian with local interactions, whereas critical behavior in the bulk is reflected on a diverging interaction length of the boundary Hamiltonian. Furthermore, topologically ordered states yield non-local Hamiltonians. As our duality also associates a boundary operator to any operator in the bulk, it in fact provides a full holographic framework for the study of quantum many-body systems via their boundary. Work done in collaboration with Didier Poilblanc, Norbert Schuch, and Frank Verstraete.