PIRSA:14110085

Horizon Scale Lepton Acceleration in Jets: Explaining the Compact Radio Emission in M87

APA

Tchekhovskoy, A. (2014). Horizon Scale Lepton Acceleration in Jets: Explaining the Compact Radio Emission in M87. Perimeter Institute for Theoretical Physics. https://pirsa.org/14110085

MLA

Tchekhovskoy, Alexander. Horizon Scale Lepton Acceleration in Jets: Explaining the Compact Radio Emission in M87. Perimeter Institute for Theoretical Physics, Nov. 11, 2014, https://pirsa.org/14110085

BibTex

          @misc{ scivideos_PIRSA:14110085,
            doi = {10.48660/14110085},
            url = {https://pirsa.org/14110085},
            author = {Tchekhovskoy, Alexander},
            keywords = {Other Physics},
            language = {en},
            title = {Horizon Scale Lepton Acceleration in Jets: Explaining the Compact Radio Emission in M87},
            publisher = {Perimeter Institute for Theoretical Physics},
            year = {2014},
            month = {nov},
            note = {PIRSA:14110085 see, \url{https://scivideos.org/index.php/pirsa/14110085}}
          }
          

Alexander Tchekhovskoy Princeton University

Talk numberPIRSA:14110085
Source RepositoryPIRSA
Collection
Talk Type Conference
Subject

Abstract

It has now become clear that the radio jet in the giant elliptical galaxy M87 must turn on very close to the black hole. This implies the efficient acceleration of leptons within the jet at scales much smaller than feasible by the typical dissipative events usually invoked to explain jet synchrotron emission. Here we show that the stagnation surface, the separatrix between material that falls back into the black hole and material that is accelerated outward forming the jet, is a natural site of pair formation and particle acceleration. This occurs via an inverse-Compton pair catastrophe driven by unscreened electric fields within the charge-starved region about the stagnation surface and substantially amplified by a post-gap cascade. For typical estimates of the jet properties in M87, we find excellent quantitive agreement between the predicted relativistic lepton densities and those required by recent high-frequency radio observations of M87.