Format results
-
Talk
-
Quantum Fields and Strings 2021/2022 - Lecture 3
Dan Wohns Perimeter Institute for Theoretical Physics
-
Quantum Fields and Strings - Lecture 2
Dan Wohns Perimeter Institute for Theoretical Physics
-
Quantum Fields and Strings 2021/2022 -Lecture 1
Dan Wohns Perimeter Institute for Theoretical Physics
-
-
Talk
-
Geometry and topology for physicists 2021/2022 - Lecture 14
-
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:22030072 -
-
Geometry and topology for physicists 2021/2022 - Lecture 13
-
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:22030071 -
-
Geometry and topology for physicists 2021/2022 - Lecture 12
-
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:22030070 -
-
Geometry and topology for physicists 2021/2022 - Lecture 10
-
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:22030068 -
-
Geometry and topology for physicists 2021/2022 - Lecture 9
-
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:22030067 -
-
Geometry and topology for physicists 2021/2022 - Lecture 8
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:22030066 -
Geometry and topology for physicists 2021/2022 - Lecture 7
-
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:22030065 -
-
Geometry and topology for physicists 2021/2022 - Lecture 6
-
Kevin Costello Perimeter Institute for Theoretical Physics
PIRSA:22030064 -
-
-
Talk
-
PSI Lecture - Condensed Matter - Lecture 15
Aaron Szasz Alphabet (United States)
-
PSI Lecture - Condensed Matter - Lecture 14
Aaron Szasz Alphabet (United States)
-
PSI Lecture - Condensed Matter - Lecture 13
Aaron Szasz Alphabet (United States)
-
PSI Lecture - Condensed Matter - Lecture 12
Aaron Szasz Alphabet (United States)
-
PSI Lecture - Condensed Matter - Lecture 11
Aaron Szasz Alphabet (United States)
-
PSI Lecture - Condensed Matter - Lecture 10
Aaron Szasz Alphabet (United States)
-
PSI Lecture - Condensed Matter - Lecture 9
Aaron Szasz Alphabet (United States)
-
PSI Lecture - Condensed Matter - Lecture 8
Aaron Szasz Alphabet (United States)
-
-
Talk
-
-
Talk
-
Summer Undergrad 2020 - Path Integrals (M) - Lecture 5
Dan Wohns Perimeter Institute for Theoretical Physics
PIRSA:20060007 -
Summer Undergrad 2020 - Path Integrals (M) - Lecture 4
Dan Wohns Perimeter Institute for Theoretical Physics
PIRSA:20060006 -
Summer Undergrad 2020 - Path Integrals (M) - Lecture 3
Dan Wohns Perimeter Institute for Theoretical Physics
PIRSA:20060005 -
Summer Undergrad 2020 - Path Integrals (M) - Lecture 2
Dan Wohns Perimeter Institute for Theoretical Physics
PIRSA:20050037 -
Summer Undergrad 2020 - Path Integrals (M) - Lecture 1
Dan Wohns Perimeter Institute for Theoretical Physics
PIRSA:20050036
-
-
Talk
-
-
Talk
-
Summer Undergrad 2020 - Quantum Information - Lecture 5
Alioscia Hamma University of Naples Federico II
-
Summer Undergrad 2020 - Quantum Information - Lecture 4
Alioscia Hamma University of Naples Federico II
-
Summer Undergrad 2020 - Quantum Information - Lecture 3
Alioscia Hamma University of Naples Federico II
-
Summer Undergrad 2020 - Quantum Information - Lecture 2
Alioscia Hamma University of Naples Federico II
-
Summer Undergrad 2020 - Quantum Information - Lecture 1
Alioscia Hamma University of Naples Federico II
-
-
Talk
-
Summer Undergrad 2020 - Numerical Methods (A) - Lecture 5
Aaron Szasz Alphabet (United States)
PIRSA:20060013 -
Summer Undergrad 2020 - Numerical Methods (A) - Lecture 4
Aaron Szasz Alphabet (United States)
PIRSA:20060012 -
Summer Undergrad 2020 - Numerical Methods (A) - Lecture 3
Aaron Szasz Alphabet (United States)
PIRSA:20060011 -
Summer Undergrad 2020 - Numerical Methods (A) - Lecture 2
Aaron Szasz Alphabet (United States)
PIRSA:20050041 -
Summer Undergrad 2020 - Numerical Methods (A) - Lecture 1
Aaron Szasz Alphabet (United States)
PIRSA:20050040
-
-
Talk
-
PSI 2019/2020 - Cosmology Part 2 - Lecture 2
Matthew Johnson York University
-
PSI 2019/2020 - Cosmology Part 2 - Lecture 1
Matthew Johnson York University
-
-
Talk
-
PSI 2019/2020 - Quantum Gravity Part 1 - Lecture 6
Bianca Dittrich Perimeter Institute for Theoretical Physics
-
PSI 2019/2020 - Quantum Gravity Part 1 - Lecture 5
Bianca Dittrich Perimeter Institute for Theoretical Physics
-
PSI 2019/2020 - Quantum Gravity Part 1 - Lecture 4
Bianca Dittrich Perimeter Institute for Theoretical Physics
-
PSI 2019/2020 - Quantum Gravity Part 1 - Lecture 3
Bianca Dittrich Perimeter Institute for Theoretical Physics
-
PSI 2019/2020 - Quantum Gravity Part 1 - Lecture 2
Bianca Dittrich Perimeter Institute for Theoretical Physics
-
PSI 2019/2020 - Quantum Gravity Part 1 - Lecture 1
Bianca Dittrich Perimeter Institute for Theoretical Physics
-
-
Talk
-
PSI 2019/2020 - Relativistic Quantum Information Part 1 - Lecture 4
Eduardo Martin-Martinez University of Waterloo
-
PSI 2019/2020 - Relativistic Quantum Information Part 1 - Lecture 3
Eduardo Martin-Martinez University of Waterloo
-
PSI 2019/2020 - Relativistic Quantum Information Part 1 - Lecture 2
Eduardo Martin-Martinez University of Waterloo
-
PSI 2019/2020 - Relativistic Quantum Information Part 1 - Lecture 1
Eduardo Martin-Martinez University of Waterloo
-
-
Talk
-
PSI 2019/2020 - Machine Learning for Many-Body Physics - Lecture 2
Mohamed Hibat Allah University of Waterloo
-
PSI 2019/2020 - Machine Learning for Many-Body Physics - Lecture 1
Mohamed Hibat Allah University of Waterloo
-
-
Quantum Fields and Strings 2021/2022
This course covers three distinct topics: conformal field theory, anomalies, and string theory. The conformal field theory section of the course introduces conformal transformation and the conformal algebra, n-point functions in CFTs, and OPEs. The anomalies portion of the course focuses on the functional integral derivation of the chiral anomaly. The string theory part of the course derives the bosonic string spectrum and introduces T-duality and D-branes. -
Geometry and Topology for Physicists 2021/2022
The aim of this course is to introduce concepts in topology and geometry for applications in theoretical physics. The topics will be chosen depending on time availability from the following list: topological manifolds and smooth manifolds, differential forms and integration on manifolds, Lie groups and Lie algebras, and Riemann surfaces, cohomology and the fundamental group. -
PSI Lecture - Condensed Matter
PSI Lecture - Condensed Matter -
-
Summer Undergrad 2020 - Path Integrals
The goal of this course is to introduce the path integral formulation of quantum mechanics and a few of its applications. We will begin by motivating the path integral formulation and explaining its connections to other formulations of quantum mechanics and its relation to classical mechanics. We will then explore some applications of path integrals. Each 90-minute session will include roughly equal amounts of lecture time and activities. The activities are designed to enhance your learning experience and allow you to assess your own level of understanding.
-
Summer Undergrad 2020 - Symmetries
The aim of this course is to explore some of the many ways in which symmetries play a role in physics. We’ll start with an overview of the concept of symmetries and their description in the language of group theory. We will then discuss continuous symmetries and infinitesimal symmetries, their fundamental role in Noether’s theorem, and their formalisation in terms of Lie groups and Lie algebras. In the last part of the course we will focus on symmetries in quantum theory and introduce representations of (Lie) groups and Lie algebras.
-
Summer Undergrad 2020 - Quantum Information
The aim of this course is to understand the thermodynamics of quantum systems and in the process to learn some fundamental tools in Quantum Information. We will focus on the topics of foundations of quantum statistical mechanics, resource theories, entanglement, fluctuation theorems, and quantum machines.
-
Summer Undergrad 2020 - Numerical Methods
This course has two main goals: (1) to introduce some key models from condensed matter physics; and (2) to introduce some numerical approaches to studying these (and other) models. As a precursor to these objectives, we will carefully understand many-body states and operators from the perspective of condensed matter theory. (However, I will cover only spin models. We will not discuss or use second quantization.)
Once this background is established, we will study the method of exact diagonalization and write simple python programs to find ground states, correlation functions, energy gaps, and other properties of the transverse-field Ising model. We will also discuss the computational limitations of exact diagonalization. Finally, I will introduce the concept of matrix product states, and we will see that these can be used to study ground state properties for much larger systems than can be studied with exact diagonalization.
Each 90-minute session will include substantial programming exercises in addition to lecture. Prior programming experience is not expected or required, but I would like everyone to have python (version 3) installed on their computer prior to the first class, including Jupyter notebooks; see “Resources” below.
-
PSI 2019/2020 - Cosmology Part 2
PSI 2019/2020 - Cosmology Part 2 -
PSI 2019/2020 - Quantum Gravity Part 1
PSI 2019/2020 - Quantum Gravity Part 1 -
PSI 2019/2020 - Relativistic Quantum Information Part 1
PSI 2019/2020 - Relativistic Quantum Information Part 1 -
PSI 2019/2020 - Machine Learning for Many-Body Physics
PSI 2019/2020 - Machine Learning for Many-Body Physics