Format results
-
Talk
-
Quantum Information 2021/2022
-
Eduardo Martin-Martinez Institute for Quantum Computing (IQC)
-
Philippe Allard Guerin Royal Military College Saint-Jean
PIRSA:22030081 -
-
Quantum Information 2021/2022
-
Eduardo Martin-Martinez Institute for Quantum Computing (IQC)
-
Philippe Allard Guerin Royal Military College Saint-Jean
PIRSA:22030080 -
-
Quantum Information 2021/2022
-
Eduardo Martin-Martinez Institute for Quantum Computing (IQC)
-
Philippe Allard Guerin Royal Military College Saint-Jean
PIRSA:22030079 -
-
Quantum Information 2021/2022
-
Eduardo Martin-Martinez Institute for Quantum Computing (IQC)
-
Philippe Allard Guerin Royal Military College Saint-Jean
PIRSA:22030078 -
-
Quantum Information 2021/2022
-
Eduardo Martin-Martinez Institute for Quantum Computing (IQC)
-
Philippe Allard Guerin Royal Military College Saint-Jean
PIRSA:22030077 -
-
Quantum Information 2021/2022
-
Eduardo Martin-Martinez Institute for Quantum Computing (IQC)
-
Philippe Allard Guerin Royal Military College Saint-Jean
PIRSA:22030076 -
-
Quantum Information 2021/2022
-
Eduardo Martin-Martinez Institute for Quantum Computing (IQC)
-
Philippe Allard Guerin Royal Military College Saint-Jean
PIRSA:22030075 -
-
Quantum Information 2021/2022
-
Eduardo Martin-Martinez Institute for Quantum Computing (IQC)
-
Philippe Allard Guerin Royal Military College Saint-Jean
PIRSA:22030074 -
-
-
Talk
-
Classical and Quantum Chaos 2021/2022 - Lecture 14
Meenu Kumari National Research Council Canada (NRC)
PIRSA:22030058 -
Classical and Quantum Chaos 2021/2022 - Lecture 13
Meenu Kumari National Research Council Canada (NRC)
PIRSA:22030057 -
Classical and Quantum Chaos 2021/2022 - Lecture 12
Meenu Kumari National Research Council Canada (NRC)
PIRSA:22030056 -
Classical and Quantum Chaos 2021/2022 - Lecture 11
Meenu Kumari National Research Council Canada (NRC)
PIRSA:22030055 -
Classical and Quantum Chaos 2021/2022 - Lecture 10
Meenu Kumari National Research Council Canada (NRC)
PIRSA:22030054 -
Classical and Quantum Chaos 2021/2022 - Lecture 9
Meenu Kumari National Research Council Canada (NRC)
PIRSA:22030053 -
Classical and Quantum Chaos 2021/2022 - Lecture 8
Meenu Kumari National Research Council Canada (NRC)
PIRSA:22030052 -
Classical and Quantum Chaos 2021/2022 - Lecture 7
Meenu Kumari National Research Council Canada (NRC)
PIRSA:22030112
-
-
Talk
-
-
Talk
-
PSI Lecture - Condensed Matter - Lecture 15
Aaron Szasz Alphabet (United States)
-
PSI Lecture - Condensed Matter - Lecture 14
Aaron Szasz Alphabet (United States)
-
PSI Lecture - Condensed Matter - Lecture 13
Aaron Szasz Alphabet (United States)
-
PSI Lecture - Condensed Matter - Lecture 12
Aaron Szasz Alphabet (United States)
-
PSI Lecture - Condensed Matter - Lecture 11
Aaron Szasz Alphabet (United States)
-
PSI Lecture - Condensed Matter - Lecture 10
Aaron Szasz Alphabet (United States)
-
PSI Lecture - Condensed Matter - Lecture 9
Aaron Szasz Alphabet (United States)
-
PSI Lecture - Condensed Matter - Lecture 8
Aaron Szasz Alphabet (United States)
-
-
Talk
-
Welcome and Opening Remarks
-
Matthew Johnson York University
-
Cheng-Ju Lin University of Maryland, College Park
-
-
Tsung-Cheng (Peter) Lu
Tsung-Cheng Lu (Peter) University of Maryland, College Park
-
Roland Bittleson
Roland Bittleston Perimeter Institute for Theoretical Physics
-
-
-
-
Suvodip Mukherjee
Suvodip Mukherjee Tata Institute of Fundamental Research (TIFR)
-
-
-
Talk
-
Welcome and Opening Remarks
-
Alexander Smith Saint Anselm College
-
Flaminia Giacomini ETH Zurich
-
-
-
Kappa-Minkowski: physics with noncommutative time
Flavio Mercati University of Naples Federico II
-
Quantizing causation
Robert Spekkens Perimeter Institute for Theoretical Physics
-
Non-causal Page-Wootters circuits
Veronika Baumann Institute for Quantum Optics and Quantum Information (IQOQI) - Vienna
-
Quantum reference frames for space and space-time
Časlav Brukner Institute for Quantum Optics and Quantum Information (IQOQI) - Vienna
-
-
A New Perspective on Time Reversal Motivated by Quantum Gravity
Abhay Ashtekar Pennsylvania State University
-
-
Talk
-
Welcome and Opening Remarks
Anna Heffernan University of the Balearic Islands
-
Self force review
Maarten van de Meent Max Planck Institute for Gravitational Physics - Albert Einstein Institute (AEI)
-
Discontinuous collocation methods and self-force applications
Charalampos Markakis Queen Mary University of London
-
Conformal numerical method for self force applications in the time domain
Lidia Joana Gomes Da Silva Queen Mary University of London
-
Kerr self-force via elliptic PDEs: Background and theory (part 1)
Nami Nishimura State University of New York (SUNY)
-
Kerr self-force via elliptic PDEs: Numerical methods (part 2)
Thomas Osburn State University of New York (SUNY)
-
A multi-mode time-domain surrogate model for gravitational wave signals from comparable to extreme mass-ratio black hole binaries
Tousif Islam University of Massachusetts Dartmouth
-
Fast Self-Forced Inspirals into a Rotating Black Hole
Philip Lynch National University of Ireland
-
-
Talk
-
Welcome and Opening Remarks
Kirill Krasnov University of Nottingham
-
Finite quantum geometry, octonions and the theory of fundamental particles.
Michel Dubois-Violette University of Paris-Saclay
-
Supersymmetry and RCHO revisited
Paul Townsend University of Cambridge
-
Spin (8,9,10), Octonions and the Standard Model
Kirill Krasnov University of Nottingham
-
Gravity as the square of gauge theory
Leron Borsten Heriot-Watt University
-
A Magic Pyramid of Supergravity Theories from Yang-Mills Squared
Mia Hughes Imperial College London
-
Division algebraic symmetry breaking
-
Cohl Furey Humboldt University of Berlin
-
Mia Hughes Imperial College London
-
-
Clifford algebra of the Standard Model
Ivan Todorov Bulgarian Academy of Sciences
-
-
Talk
-
Welcome and Opening Remarks
-
Bianca Dittrich Perimeter Institute for Theoretical Physics
-
Theo Johnson-Freyd Dalhousie University
-
Sylvie Paycha University of Potsdam
-
Katarzyna Rejzner University of York
-
Anne Taormina Durham University
-
Reiko Toriumi Okinawa Institute of Science and Technology Graduate University
-
-
Division algebraic symmetry breaking
Cohl Furey Humboldt University of Berlin
-
State sum models with defects
Catherine Meusburger University of Erlangen-Nuremberg
-
Quantum information and black holes
Johanna Erdmenger University of Würzburg
-
Researcher Presentations
-
Karen Yeats University of Waterloo
-
Sabine Harribey Nordic Institute for Theoretical Physics
-
Philine van Vliet Deutsches Elektronen-Synchrotron DESY
-
Maria Elena Tejeda-Yeomans University of Colima
-
Maryam Khaqan Emory University
-
-
Mathematical Puzzles from Causal Set Quantum Gravity
Sumati Surya Raman Research Institute
-
On generalized hyperpolygons
Laura Schaposnik University of Illinois at Chicago
-
Exploring spacetime beyond classicality
Renate Loll Radboud Universiteit Nijmegen
-
-
Talk
-
Tensor networks for LGT: beyond 1D
Mari-Carmen Banuls Max Planck Institute for Gravitational Physics - Albert Einstein Institute (AEI)
-
Tensor networks for critical systems
Frank Verstraete Ghent University
-
Tensor network models of AdS/qCFT
Jens Eisert Freie Universität Berlin
-
-
Quantum Cellular Automata, Tensor Networks, and Area Laws
Ignacio Cirac Max Planck Institute for Gravitational Physics - Albert Einstein Institute (AEI)
-
Fun with replicas and holographic tensor networks
Michael Walter University of Amsterdam
-
A tensor-network approach to fixed-point models of topological phases
Andreas Bauer Freie Universität Berlin
-
Custom Fermionic Codes for Quantum Simulation
Riley Chien Dartmouth College
-
-
Talk
-
Welcome and Opening Remarks
Michael Hermele University of Colorado Boulder
-
Quantum Phases of Matter and Entanglement Basics
John McGreevy University of California, San Diego
-
Seminar: Engineering quantum spin models with atoms and light
Monika Schleier-Smith Stanford University
-
SYK criticality and correlated metals
Subir Sachdev Harvard University
-
-
-
Seminar: Quantum matter in Moire materials
Pablo Jarillo-Herrero Massachusetts Institute of Technology (MIT) - Center for Extreme Quantum Information Theory (xQIT)
-
Exactly Solvable Topological and Fracton Models as Gauge Theories 1
Xie Chen California Institute of Technology
-
-
Talk
-
Welcome and Opening Remarks
Bianca Dittrich Perimeter Institute for Theoretical Physics
-
Approaches to Quantum Gravity: Key Achievements and Open Issues
Hermann Nicolai Max-Planck-Institut für Gravitationsphysik
-
Quantum gravity from the loop perspective
Alejandro Perez Aix-Marseille University
-
Lessons for quantum gravity from quantum information theory
Daniel Harlow Massachusetts Institute of Technology (MIT)
-
Understanding of QG from string theory
Herman Verlinde Princeton University
-
Progress in horizon thermodynamics
Aron Wall University of Cambridge
-
Asymptotically Safe Amplitudes from the Quantum Effective Action
Frank Saueressig Radboud Universiteit Nijmegen
-
The Remarkable Roundness of the Quantum Universe
Renate Loll Radboud Universiteit Nijmegen
-
-
Quantum Fields and Strings 2021/2022
This course covers three distinct topics: conformal field theory, anomalies, and string theory. The conformal field theory section of the course introduces conformal transformation and the conformal algebra, n-point functions in CFTs, and OPEs. The anomalies portion of the course focuses on the functional integral derivation of the chiral anomaly. The string theory part of the course derives the bosonic string spectrum and introduces T-duality and D-branes. -
Classical and Quantum Chaos 2021/2022
Chaos, popularly known as the butterfly effect, is a ubiquitous phenomenon that renders a system's evolution unpredictable due to extreme sensitivity to initial conditions. Within the context of classical physics, it often occurs in nonintegrable Hamiltonian systems and is characterized by positive Lyapunov exponents. On the other hand, the notion of nonintegrability and chaos in quantum physics is still not well-understood and is an area of active research. Several signatures have been studied in the literature to identify quantum chaos but all of them fall short in some way or the other. In this course, we will first discuss the notions of classical integrability, and classical chaos and its characterization with Lyapunov exponents. Then, we will discuss a few well-studied signatures of quantum chaos and the subtleties associated with them. -
-
PSI Lecture - Condensed Matter
PSI Lecture - Condensed Matter -
Postdoc Welcome 2021
As COVID-19 continues to impose gathering restrictions, the “Postdoc Welcome 2021” will continue as a virtual event this year and will be hosted on Thursday, October 28 and Friday, October 29. Each new postdoc will be given 5 minutes to introduce themselves to the PI Community. The time will be used to tell us a little bit about themselves and to showcase their current research. These presentations are very casual and should not be misconstrued as formal talks. Some discussion will follow the presentations, whereby current PI Residents may have the opportunity to ask questions.
There will be two 60-minute sessions:
Thursday, October 28: 12:00 – 1:00 pm
Friday, October 29: 11:30 – 12:30 pmAll PI Residents are encouraged to attend. Registration will remain open until 9:00 am on Thursday, October 28.
Please register for the Postdoc Welcome via the event website: https://events.perimeterinstitute.ca/event/9/overview
-
Octonions and the Standard Model
Over the years, various researchers have suggested connections between the octonions and the standard model of particle physics. The past few years, in particular, have been marked by an upsurge of activity on this subject, stimulated by the recent observation that the standard model gauge group and fermion representation can be elegantly characterized in terms of the octonions. This workshop, which will be the first ever on this topic, is intended to bring this new community together in an attempt to better understand these ideas, establish a common language, and stimulate further progress.
The workshop will consist of an hour-long talk every Monday at noon (EST), with the first talk on Monday February 8, and the final talk on Monday May 17.