This talk will introduce scalar-tensor theories of gravity that contain a single scalar degree of freedom in addition to the usual tensor modes. These theories constitute the very broad family of Degenerate Higher-Order Scalar-Tensor (DHOST) theories, which include and extend Horndeski theories. Cosmological aspects of these theories will then be discussed. Finally, I will also present some results concerning black hole perturbations in the context of these models of modified gravity.
I will present the class of effective field theories of dark energy, which aim to reproduce a dark energy-like phenomenology by modifying general relativity with the addition of a scalar graviton. I will review how non-linearities can "screen" local scales from scalar effects, therefore allowing these theories to pass existing solar-system experimental tests. I will then present fully relativistic simulations of gravitational wave generation in these theories in 1+1 dimensions (stellar oscillations and collapse) and 3+1 dimensions (binary neutron stars). I will show that screening tends to suppress the (subdominant) dipole scalar emission in binary neutron star systems, but it fails to quench monopole scalar emission in gravitational collapse, and quadrupole scalar emission in binaries. This opens the way to the exciting possibility of testing dark energy with gravitational wave data.
With a rapidly growing family of vdW materials, the role of dielectric and metals have become more important than ever. In this talk, I will present challenges associated with the synthesis of atomically-precise three-dimensional (3D) perovskite nanomembranes followed by our group’s effort to address them. Using hybrid molecular beam epitaxy that employs a metal-organic precursor, titanium isopropoxide (TTIP), to supply both Ti and oxygen (without the need for additional oxygen), epitaxial SrTiO3 (STO) films were grown directly on a graphene layer transferred on to bulk STO substrate. Films were then successfully exfoliated and transferred onto other substrates. Using Raman spectroscopy and high-resolution X-ray diffraction, we show that the transferred STO membrane is single-crystalline and can be integrated with other vdW materials. I will also present sacrificial layer route to create oxide membranes resulting in room temperature dielectric constant of ~ 300. Finally, I will present...
In recent years, the experimental realization of magnetic long-range order in atomically thin 2D materials has shown a big potential in spintronic applications in ultrathin magnets due to the possibility of manipulation of magnetism by external fields, strain or proximity effects in van der Waals heterostructures. Specifically, the family of metallic magnets FenGeTe2 (n=3, 4, 5) has attracted a huge attention due to their high Curie temperatures and intriguing properties. In this talk, I will review the status of this research field, highlighting our own research by ab initio density functional theory, calculations of interatomic exchange interaction parameters and Monte Carlo simulations. A particular emphasis will be given on the systematic study of the electronic structure and magnetism of FenGeTe2 magnets along with some critical discussions on the importance of electron correlation with the aid of dynamical mean field theory, spin-orbit coupling and effects of transition metal dop...
Double perovskite oxides (DPOs) with two transition metal ions (A2BB′O6) offer a fascinating platform for exploring exotic physics and practical applications. Studying these DPOs as ultrathin epitaxial thin films on single crystalline substrates can add another dimension to engineering electronic, magnetic, and topological phenomena. Understanding the consequence of polarity mismatch between the substrate and the DPO would be the first step towards this broad goal. We investigate this by studying the interface between a prototypical insulating DPO Nd2NiMnO6 and a wide-band gap insulator SrTiO3. The interface is found to be insulating in nature. By combining several experimental techniques and density functional theory, we establish a site- selective charge compensation process that occurs explicitly at the Mn site of the film, leaving the Ni sites inert. We further demonstrate that such surprising selectivity, which cannot be explained by existing mechanisms of polarity compensation, i...
Observation of magnetic ordering in 2D layered materials at finite temperatures have drawn significant interest in recent years. Though Mermin-Wagner-Hohenburg theorem forbids long range ordering in 2D systems, anisotropy can lead to spin ordering at finite temperatures. One of such classes of 2D magnets explored recently is the transition metal phosphorus trisulphides (MPS3, M = Mn, Fe, and Ni) that hosts antiferromagnetic (AFM) ground state at low temperatures [1]. The AFM ground state exhibits different spin dimensionalities, (viz., n=1,2, and 3) due to the presence of an axial or planar anisotropy or in the absence of any anisotropic element [2] which may be described by the Ising (e.g., FePS3), XY (e.g.,
NiPS3), and Heisenberg (e.g., MnPS3) Hamiltonians, respectively [1]. Engineered heterostructures of magnetic layered materials with high spin-orbit coupled systems like topological materials has the potential to control the quantum interactions unravelling a variety of exotic phe...
Recently, there has been much interest in black hole echoes, based on the idea that there may be some mechanism (e.g., from quantum gravity) that waves/fields falling into a black hole could partially reflect off of an interface before reaching the horizon. There does not seem to be a good understanding of how to properly model a reflecting surface in numerical relativity, as the vast majority of the literature avoids the implementation of artificial boundaries, or applies transmitting boundary conditions. Here, we present a framework for reflecting a scalar field in a fully dynamical spherically symmetric spacetime, and implement it numerically. We study the evolution of a wave packet in this situation and its numerical convergence, including when the location of a reflecting boundary is very close to the horizon of a black hole. This opens the door to model exotic near-horizon physics within full numerical relativity.
The non-linear dynamics of gravitational wave propagation in spacetime can contain drastic new phenomenology that is absent from the linearised theory. In this talk, I will probe the non-linear radiative regime of Horndeski gravity by making use of disformal field redefinition. I will discuss how disformal transformations alter the properties of congruences of geodesics and in particular how they can generate disformal gravitational waves at the fully non-linear level. I will illustrate this effect by presenting a new exact radiative solution in Horndeski gravity describing a scalar pulse. Analysing the non-linear dynamics of this new radiative solution will show that it contains tensorial gravitational waves generated by a purely time-dependent scalar monopole. This intriguing result is made possible by the higher-order nature of Horndeski gravity.
Gravitational waves from black hole binary mergers can tell us a lot about the physics of the system. At the late part of the graviational wave signal, GR predicts the presence of characteristic frequencies (called quasinormal modes) in the signal. Measuring multiple quasinormal modes is a strong consistency test for GR.
Here we probe the regime where a signal can be described entirely by quasinormal modes. We consider a higher order effect, where the remnant black hole is absorbing some radiation and so has a changing mass and spin. We test the contribution of this effect to the signal in a physically relevant scenario. We find evidence that this effect causes other mode excitations as well as a changing frequency contribution.