Format results
Celestial Holography from Euclidean AdS space.
Lorenzo Iacobacci Université Libre de Bruxelles
Lecture - Quantum Theory, PHYS 605
Bindiya Arora Perimeter Institute for Theoretical Physics
Everything that can be learned about a causal structure with latent variables by observational and interventional probing schemes
Marina Maciel Ansanelli Perimeter Institute for Theoretical Physics
PIRSA:24090191Lecture - Classical Physics, PHYS 776
Aldo Riello Perimeter Institute for Theoretical Physics
PIRSA:24090006
Celestial Holography from Euclidean AdS space.
Lorenzo Iacobacci Université Libre de Bruxelles
We will explore the connection between Celestial and Euclidean Anti-de Sitter (EAdS) holography in the massive scalar case. Specifically, exploiting the so-called hyperbolic foliation of Minkowski space-time, we will show that each contribution to massive Celestial correlators can be reformulated as a linear combination of contributions to corresponding massive Witten correlators in EAdS. This result will be demonstrated explicitly both for contact diagrams and for the four-point particle exchange diagram, and it extends to all orders in perturbation theory by leveraging the bootstrapping properties of the Celestial CFT (CCFT). Within this framework, the Kantorovic-Lebedev transform plays a central role, which will be introduced at the end of the talk. This transform will allow us to make broader considerations regarding non-perturbative properties of a CCFT.
Channel Expressivity Measures
Matthew Duschenes Perimeter Institute
PIRSA:24090201The dynamics of closed quantum systems undergoing unitary processes has been well studied, leading to notions of measures for the expressive power of parameterized quantum circuits, relative to the unique, maximally expressive, average behaviour of ensembles of unitaries. Such unitary expressivity measures have further been linked to concentration phenomena known as barren plateaus. However, existing quantum hardware are not isolated from their noisy environment, and such non-unitary dynamics must therefore be described by more general trace-preserving operations. To account for hardware noise, we propose several, non-unique measures of expressivity for quantum channels and study their properties, highlighting how average non-unitary channels differ from average unitary channels. In the limit of large composite system and environments, average noisy quantum channels are shown to be maximally globally depolarizing, with next-leading-order non-unital perturbative behaviour. Furthermore, we rigorously prove that highly-expressive parameterized quantum channels will suffer from barren plateaus, thus generalizing explanations of noise-induced phenomena. This work is based on forthcoming work with Diego Martin, Zoe Holmes, and Marco Cerezo, in affiliation with Los Alamos National Laboratory.Categories of line defects and cohomological Hall algebras
BPS line defects in 4d N=2 supersymmetric QFT are described by a monoidal category with a list of desired properties. For example, the Grothendieck group of this category is supposed to coincide with quantization of functions on Coulomb branch of the theory compactified on a circle. Based on an observation, that at a given vacuum the spectrum of PBS particles can be quipped with an algebra structure – cohomological Hall algebra of the corresponding BPS quiver – we propose a category generated by certain bimodules over this algebra that possesses expected properties of the category of lines. Based on a joint work with Davide Gaiotto and Wei Li.
Lecture - Quantum Theory, PHYS 605
Bindiya Arora Perimeter Institute for Theoretical Physics
Energy cost of maximal entanglement extraction in QFT
PIRSA:24090196We present a study of the relationship between energy and entanglement in finite regions of possibly arbitrary shape in QFT. We show how one can quantify the entanglement avoiding divergences by using techniques inspired by the formalism of particle detectors in relativistic quantum information. We also show how the energy cost of entanglement extraction varies with the shape and size of the regions, as well as analyze the energy density of the quantum field after this entanglement has been extracted.Partitions in quantum theory
Augustin Vanrietvelde Télécom Paris
The standard perspective on subsystems in quantum theory is a bottom-up, compositional one: one starts with individual "small" systems, viewed as primary, and composes them together to form larger systems. The top-down, decompositional perspective goes the other way, starting with a "large" system and asking what it means to partition it into smaller parts. In this talk, I will 1/ argue that the adoption of the top-down perspective is the key to progress in several current areas of foundational research; and 2/ present an integrated mathematical framework for partitions into three or more subsystems, using sub-C* algebras. Concerning the first item, I will explain how the top-down perspective becomes crucial whenever the way in which a quantum system is partitioned into smaller subsystems is not unique, but might depend on the physical situation at hand. I will display how that precise feature lies at the heart of a flurry of current hot foundational topics, such as quantum causal models, Wigner's friend scenarios, superselection rules, quantum reference frames, and debates over the implementability of the quantum switch. Concerning the second item, I will argue that partitions in (finite-dimensional) quantum theory can be naturally pinned down using sub-C* algebras. Building on simple illustrative examples, I will discuss the often-overlooked existence of non-factor C*-algebras, and how it leads to numerous subtleties -- in particular a generic failure of local tomography. I will introduce a sound framework for quantum partitions that overcomes these challenges; it is the first top-down framework that allows to consider three or more subsystems. Finally, as a display of this framework's technical power, I will briefly present how its application to quantum causal modelling unlocked the proof that all 1D quantum cellular automata admit causal decompositions.
(This is joint work with Octave Mestoudjian and Pablo Arrighi. This talk is complementary to my Causalworlds 2024 presentation, which will focus on the issue of causal decompositions.)
Violation of Bell's inequality in continuous variable systems
PIRSA:24090195Violations of Bell’s inequality have been studied for spin-1/2 systems in much detail. Turns out that one can show Bell violation for systems that are expressed in terms of continuous variables such as position and momentum. The most ubiquitous examples of such systems are Gaussian states, notably the two-mode squeezed vacuum state. I will talk about how one can quantify violations of local realism in such states. I will discuss the dependence of Bell violation on temperature as well as the result that entanglement is not a monotonic function of Bell's inequality.Everything that can be learned about a causal structure with latent variables by observational and interventional probing schemes
Marina Maciel Ansanelli Perimeter Institute for Theoretical Physics
PIRSA:24090191What types of differences among causal structures with latent variables are impossible to distinguish by statistical data obtained by probing each visible variable? If the probing scheme is simply passive observation, then it is well-known that many different causal structures can realize the same joint probability distributions. Even for the simplest case of two visible variables, for instance, one cannot distinguish between causal influence of one variable on the other and the two variables sharing a latent common cause. However, it is possible to distinguish between these two causal structures if we have recourse to more powerful probing schemes, such as the possibility of intervening on one of the variables and observing the other. Herein, we address the question of which causal structures remain indistinguishable even given the most informative types of probing schemes on the visible variables. We find that two causal structures remain indistinguishable if and only if they are both associated with the same mDAG structure (as defined by Evans (2016)). We also consider the question of when one causal structure dominates another in the sense that it can realize all of the joint probability distributions that can be realized by the other using a given probing scheme. (Equivalence of causal structures is the special case of mutual dominance.) Finally, we investigate to what extent one can weaken the probing schemes implemented on the visible variables and still have the same discrimination power as a maximally informative probing scheme.Lecture - Classical Physics, PHYS 776
Aldo Riello Perimeter Institute for Theoretical Physics
PIRSA:24090006