Format results
The non-perturbative Hilbert space of JT gravity
Adam LevineICTS:29456What is the bulk Hilbert space of quantum gravity? In this paper, we resolve this problem in 2d JT gravity, both with and without matter, providing the first example of an explicit definition of a non-perturbative Hilbert space specified in terms of metric variables. The states are wavefunctions of the length and matter state, but with a non-trivial and highly degenerate inner product. We explicitly identify the null states, and discuss their importance for defining operators non-perturbatively. To highlight the power of the formalism we developed, we study the non-perturbative effects for two bulk linear operators that may serve as proxies for the experience of an observer falling into a two-sided black hole: one captures the length of an Einstein-Rosen bridge and the other captures the center-of-mass collision energy between two particles falling from opposite sides. We track the behavior of these operators up to times of order eSBH, at which point the wavefunction spreads to the com...
Emergent AdS_2 from Standard Future Algebras
Nima LashkariICTS:29438We will introduce (standard) future operator algebras. We show that standard future algebras transform covariantly under the action of an emergent (universal cover of) PSL(2,R). In the case of generalized free fields with spectral densities corresponding to AdS_2 and higher dimensional eternal black holes, this symmetry corresponds to, respectively, the bulk AdS_2 and the conformal symmetry on the horizon.
Why We Explore?
Robert Myers (Distinguished lecture)ICTS:29444Humanity faces real and present problems. Our resources to address these problems are limited. It’s easy to think, then, that we should devote ourselves to our most promising solutions.
It’s easy, but it’s wrong.
The great paradox of scientific research is that pure exploration – research into deep questions motivated by pure curiosity, without concern for applications – is ultimately what transforms our lives in tangible, practical ways.
In this talk, I will speak not just as a physicist interested in puzzles of quantum entanglement and five-dimensional black holes, but as the director of an institute devoted to fundamental research. I make the case for blue-sky research, and for optimism about our shared future.
A bottom-up approach to black hole microstates
Chethan KrishnanICTS:29443We discuss a bulk construction that has many of the features of the microstates of a one-sided large AdS black hole.
Everything Everywhere All at Once
Bartek CzechICTS:29433Everything Everywhere All at Once: Holographic Entropy Inequalities, Entanglement Wedge Nesting, Topology of Error Correction, Black Holes, Cubohemioctahedron (and maybe the Toric Code)
Entanglement Negativity and its Holographic Dual
Pratik RathICTS:29432The entanglement negativity is a useful measure of quantum entanglement in bipartite mixed states. The holographic dual of this entanglement measure has been controversial with calculations based on CFT techniques conflicting with calculations in random tensor networks (RTNs) that predict replica symmetry breaking. In this talk, I will argue that replica symmetry is broken for general holographic states. The argument involves relating the entanglement negativity to the 1/2 Renyi entropy of a doubled state. In order to compute it holographically, I will also discuss a modified cosmic brane proposal for computing Renyi entropies for n
the dual of semi-classical gravity
Jan de BoerICTS:29431Recent work has produced a consistent picture of the holographic dual description of semi-classical gravity. I will describe this picture, several applications of this picture including the factorization puzzle and the information paradox, and some open questions.
York slicing in JT gravity
Sunil SakeICTS:29437In this talk, I will explore In AdS_2, states corresponding to slices of constant extrinsic curvature. We give an explicit construction of such states in JT gravity by studying the problem of non-smooth boundary conditions. The states are obtained by carrying out the appropriate Euclidean path integrals. We will discuss various checks on these states such as the classical limit, how the states constructed this way satisfy the WDW constraint etc.
Reflected entropy in a BCFT on a black hole background
Gautam SenguptaICTS:29436We obtain the reflected entropy for bipartite mixed state configurations involving two disjoint and adjacent subsystems in a two dimensional boundary conformal field theory (BCFT2) in a black hole background. The bulk dual is described by an AdS3 black string geometry truncated by a Karch-Randall brane. The entanglement wedge cross section computed for this geometry matches with the reflected entropy obtained for the BCFT2 verifying the holographic duality. In this context, we also obtain the analogues of the Page curves for the reflected entropy and investigate the behaviour of the Markov gap.
Entanglement dynamics from universal low-lying modes
Shreya VardhanICTS:29434Information-theoretic quantities such as Renyi entropies show a remarkable universality in their late-time behaviour across a variety of chaotic quantum many-body systems. Understanding how such common features emerge from very different microscopic dynamics remains an important challenge. In this talk, I will address this question in a class of Brownian models with random time-dependent Hamiltonians and a variety of different microscopic couplings. In any such model, the Lorentzian time-evolution of the n-th Renyi entropy can be mapped to evolution by a Euclidean Hamiltonian on 2n copies of the system. I will provide evidence that in systems with no symmetries, the low-energy excitations of the Euclidean Hamiltonian are universally given by a gapped quasiparticle-like band. These excitations give rise to the membrane picture of entanglement growth, with the membrane tension determined by their dispersion relation. I will establish this structure in a variety of cases using analytical ...