The observation of gravitational waves from 50 pairs of merging black hole and neutron star binaries by the LIGO-Virgo Collaboration offers the first glimpse of the potential to use these populations as tools to study the formation and evolution of compact objects and their stellar progenitors. However, even with dozens of mergers, the dominant formation pathways for merging compact-object binaries remains unconfirmed. Furthermore, even with third generation ground-based detectors, which could potentially discover merging binary black holes across all redshifts out to the epoch of reionization, such mergers only account for a tiny fraction of all black holes formed in the Universe. In this talk I will discuss opportunities to probe the formation environments and scenarios of compact objects using observations from ground- and space-based GW detectors with a particular focus on the complementary source information each detector provides. I will also discuss how GW populations play a role in the larger landscape of observations of compact objects in stellar binaries.
The Mathisson-Papapetrou-Dixon (MPD) equations describe the motion of an extended test body in general relativity. This system of equations, though, is underdetermined and has to be accompanied by constraining supplementary conditions, even in its simplest version, which is the pole-dipole approximation corresponding to a spinning test body. In particular, imposing a spin supplementary condition (SSC) fixes the center of the mass of the spinning body, i.e. the centroid of the body. In the present study, we examine whether characteristic features of the centroid of a spinning test body, moving in a circular equatorial orbit around a massive black hole, are preserved under the transition to another centroid of the same physical body, governed by a different SSC. For this purpose, we establish an analytical algorithm for deriving the orbital frequency of a spinning body, moving in the background of an arbitrary, stationary, axisymmetric spacetime with reflection symmetry, for the Tulczyjew-Dixon, the Mathisson-Pirani and the Ohashi-Kyrian-Semerak SSCs. Then, we focus on the Schwarzschild black hole background and a power series expansion method is developed, in order to investigate the discrepancies in the orbital frequencies expanded in power series of the spin among the different SSCs. Lastly, by employing the fact that the position of the centroid and the measure of the spin alters under the centroid's transition, we impose proper corrections to the power expansion of the orbital frequencies, which allows to improve the convergence between the SSCs. Our concluding argument is that when we shift from one circular equatorial orbit to another in the Schwarzschild background, under the change of a SSC, the convergence between the SSCs holds only up to certain powers in the spin expansion, and it cannot be achieved for the whole power series.
We use the frequency and time domain Teukolsky formalism to calculate gravitational wave fluxes from a spinning body on a bound eccentric equatorial orbit around a Kerr black hole. The spinning body is represented as a point particle following the pole-dipole approximation of the Mathisson-Papapetrou-Dixon equations. Reformulating these equations we are not only able to find the trajectory of a spinning particle in terms of its constants of motion, but also to provide a method to calculate the azimuthal and the radial frequency of this trajectory. Using these orbital quantities, we introduce the machinery to calculate through the frequency domain Teukolsky formalism the energy and the angular momentum fluxes at infinity, and at the horizon, along with the gravitational strain at infinity. We crosscheck the results obtained from the frequency domain approach with the results obtained from a time domain Teukolsky equation solver called Teukode.