Search results from PIRSA
11677 - 11688 of 16699 Results
Format results
-
-
-
-
-
-
-
Nonstandard Tensor Modes from Inflation
Lorenzo Sorbo University of Massachusetts Amherst
-
-
Perimeter Institute Pedagogical Introduction: Tensor Networks and Geometry, the Renormalization Group and AdS/CFT
Guifre Vidal Alphabet (United States)
PIRSA:10100098 -
-
-
-
The Tyranny of Scales
Bob Batterman University of Pittsburgh
PIRSA:11100059How can one model the behavior of materials that display radically different, dominant behaviors at different length scales. Although we have good models for material behaviors at small and large scales, it is often hard to relate these scale-based models to one another. Macroscale (effective) models represent the integrated effects of very subtle factors that are practically invisible at the smallest, atomic, scales. For this reason it has been notoriously difficult to model realistic materials with a simple bottom-up-from-the-atoms strategy. The widespread failure of that strategy forced physicists interested in overall macro-behavior of materials toward completely top-down modeling strategies familiar from traditional continuum mechanics. The problem of the ``tyranny of scales'' asks whether we can exploit our rather rich knowledge of intermediate micro- (or meso-) scale behaviors in a manner that would allow us to bridge between these two dominant methodologies. Macroscopic scale behaviors often fall into large common classes of behaviors such as the class of isotropic elastic solids, characterized by two phenomenological parameters---so-called elastic coefficients. Can we employ knowledge of lower scale behaviors to understand this universality---to determine the coefficients and to group the systems into classes exhibiting similar behavior? -
Is the renormalization Group Really that Ugly?
PIRSA:11100099In 1665, the clockmaker Christiaan Huygens noticed that two pendulum clocks hanging on a wall tend to synchronize the motion of their pendulums. A similar scenario occurs with two metronomes placed on a piano: they interact through vibrations in the wood and will eventually coordinate their motion. These effects are stable against small perturbations. Such stability is not predicted by either Hamiltonian mechanics or by few-body quantum theory. Nonetheless they can be seen as occurring within a simple model introduced by Kolmogorov. Surprisingly, this model leads to a very complex phase diagram. In turn, the complexities of this phase diagram have been observed within experimental observations of fluid flow, solid state devices, and non-linear electrical circuits. It is reflective of the structure of number theory and of the relation between rational and irrational numbers. Of course, the synchronization arises from friction, an effect often neglected in fundamental theories. Should we then regard synchronization, and its deeply mathematical explanation, as an example of an emergent phenomenon? What does emergence mean? Is is just something that surprises us? How are emergent phenomena connected with the fundamentals of our physical theories? -
MERA for Relativistic QFTs
Jutho Haegeman Ghent University
PIRSA:11100086In this second presentation, we will revisit Feynman's first argument and discuss how it still strongly influences variational studies of relativistic field theories with MPS or cMPS. However, as we explain, this argument can be completely overcome by introducing different variational parameters for the different length scales in the system, a strategy that naturally results in the MERA for lattice systems, or its continuous version for field theories. We then illustrate how a cMERA representation for the ground state of free relativistic quantum field theories can be constructed and discuss the main properties of this representation. -
MERA for QFTs
Tobias Osborne Leibniz University Hannover
PIRSA:11100090In this talk I will describe how to generalize the multiscale entanglement renormalization ansatz to quantum fields. The resulting variational class of wavefunctions, cMERA, arising from this RG flow are translation invariant and exhibit an entropy-area law. I'll illustrate the construction for some example fields, and describe how to cover the case of interacting theories. -
First EXO Results: Observation of Two-Neutrino Double-Beta Decay in 136Xe
Jacques Farine SNOLAB
The Enriched Xenon Observatory (EXO) collaboration has observed the two-neutrino double beta decay of 136Xe with EXO-200, a prototype to the full EXO detector in development. This second order process, predicted by the Standard Model, has been observed for several nuclei but not for 136Xe. The observed decay rate provides new input to matrix element calculations and to the search for the more interesting neutrino-less double-beta decay, the most sensitive probe for the existence of Majorana particles and the measurement of the neutrino mass scale. The motivation to search for neutrino-less double-beta decay will be discussed. An overview of experimental efforts, and the status of calculations of nuclear matrix elements will be given. The EXO-200 detector and underground site at WIPP, New Mexico, will be presented, and the observation of the two-neutrino decay discussed. The presentation will then focus on the development of EXO Full, a multi-tonne detector with the ability to identify the daugther ion as a powerful background reduction tool, with SNOLAB a possible site. -
First Principle Construction of Holographic Duals
Sung-Sik Lee McMaster University
PIRSA:11100095Topological Quantum field theories(TQFTs) are a special class of QFTs. Their actions do not depend on the metric of the background space-time manifold. Thus, it is very natural to define TQFTs on an arbitrary triangulation of the space-time manifold and they are independent on the triangulation. More importantly, TQFTs defined on triangulations are always a finite theory associated with a well defined cut-off. A well known example is the Turaev-Viro states sum invariants. Essentially, the Turaev-Viro constructions are (local) tensor network representations of a special class of 1+2D TQFTs. In this talk, I will show a new class of TQFTs that can be derived based on the (local) tensor network representations in arbitrary dimensions. They can be regarded as the discrete analogy of topological Berry phase terms of (discrete) non-linear sigma models. The edge theory of such a new class of TQFTs can be regarded as the discrete analogy of WZW terms. This new class of TQFTs naturally classify (bosonic) symmetry protected topological orders in arbitrary dimensions. Finally, I will also discuss new classes of fermionic TQFTs based on the Grassmann tensor network representations and possible new route towards Quantum Gravity(QG). -
Nonstandard Tensor Modes from Inflation
Lorenzo Sorbo University of Massachusetts Amherst
Several mechanisms can lead to production of particles during inflation. I discuss how this phenomenon can induce a contribution to the primordial spectrum of gravitational waves with unusual properties: the tensors produced this way can violate parity; can have a large three-point function; can have a relatively large tensor-to-scalar ratio even if inflation occurs at low energies; finally, their spectrum can display a feature that can be directly detected by second-generation gravitational interferometers such as advanced LIGO. -
MERA and CFT
Glen Evenbly Georgia Institute of Technology
PIRSA:11100098The MERA offers a powerful variational approach to quantum field theory. While the continuous MERA may allow us to directly address field theories in the continuum, the MERA on the lattice has already demonstrated its ability to characterize conformal field theories. In this talk I will explain how to extract the conformal data (central charge, primary fields, and their scaling dimensions and OPE) of a CFT from a quantum spin chain at a quantum critical point. I will consider both homogeneous systems (translation invariant) and systems with an impurity (where translation invariance is explicitly broken). Key to the success of the MERA is the exploitation of both scale and translation invariance. I will show how translation invariance can still be exploited even in the presence of an impurity, even if the system is no longer translation invariant. This follows from an intriguing "causality principle" in the RG flow. I will also discuss the relation of these results with Wilson's famous resolution of the Kondo impurity problem. -
Perimeter Institute Pedagogical Introduction: Tensor Networks and Geometry, the Renormalization Group and AdS/CFT
Guifre Vidal Alphabet (United States)
PIRSA:10100098One might be confused by the proliferation of tensor network states, such as MPS, PEPS, tree tensor networks [TTN], MERA, etc. What is the main difference between them? In this talk I will argue that the geometry of a tensor network determines several properties of the state that is being represented, such as the asymptotic scaling of correlations and of entanglement entropy. I will also describe the relation between the MERA and the Renormalization Group, and will review Brian Swingle -
MPS for Relativistic QFTs
Jutho Haegeman Ghent University
PIRSA:11100085In 1987, Feynman devoted one of his last lectures to highlighting three serious objections against the usefulness of the variational principle in the theory of relativistic quantum fields. In that same year, in a different branch of physics, Affleck, Kennedy, Lieb and Tasaki devised a quantum state that resulted in the development of a handful of different variational ansätze for lattice models over the last two decennia. These quantum states are known as tensor network states and invalidate at least two of Feynman's arguments. They could thus be used in a variational study of relativistic quantum field theories on a lattice. However, two classes of tensor network states, namely the matrix product state and the multi-scale entanglement renormalization ansatz, have recently been ported to the continuous setting, so that we now have direct access to variational wave functions for quantum field theories and are no longer restricted to a lattice regularization. -
MPS for QFTs
Frank Verstraete Ghent University
PIRSA:11100091I will talk about matrix product states and their suitability for simulating quantum many-body systems in the continuum. -
Tensor Networks and TQFTs
Zheng-Cheng Gu Chinese University of Hong Kong
PIRSA:11100094In this talk, I will present a first principle construction of a holographic dual for gauged matrix models that include gauge theories. The dual theory is shown to be a closed string field theory coupled with an emergent two-form gauge field defined in one higher dimensional space. The bulk space with an extra dimension emerges as a well defined classical background only when the two-form gauge field is in the deconfinement phase. Based on this, it is shown that critical phases that admit holographic descriptions form a novel universality class with a non-trivial quantum order.