Search results from PIRSA
Format results
-
-
Probing Black Holes with Gravitational Waves and Shadows
Sebastian Volkel SISSA International School for Advanced Studies
-
Generalized Non-local R^2-like inflation and its Universal predictions
Sravan Kumar Tokyo Institute of Technology
-
-
Goldilocks modes in celestial CFT
Andrea Puhm University of Amsterdam
-
-
-
Null Surface Thermodynamics
Mohammad M Sheikh-Jabbari Institute for Research in Fundamental Sciences (IPM)
-
Ultralocality and the robustness of slow contraction to cosmic initial conditions
Anna Ijjas Max Planck Institute for Gravitational Physics - Albert Einstein Institute (AEI)
-
Comments on Euclidean wormholes and holography
Panagiotis Betzios University of British Columbia
-
-
Cooling quantum systems with quantum information processing
Nayeli Azucena Rodríguez Briones Technische Universität Wien
-
Reducedness of quiver varieties
Yehao Zhou University of Tokyo
Nakajima’s quiver varieties play important roles in mathematical physics and representation theory. They are defined as symplectic reduction of the space of representations of the doubled quivers, and they are equipped with natural scheme structures. It is not known in general whether this scheme is reduced or not, and the reducedness issue does show up in certain scenario, for example the integration formula of the K-theoretic Nekrasov’s partition function. In this talk I will show that the quiver variety is reduced when the moment map is flat, and I will also give some applications of this result. This talk is based on my work arXiv: 2201.09838.
Zoom Link: https://pitp.zoom.us/j/97405405211?pwd=dEtVeHhQVjNrdGN4Vkh0ZlRrbEpVQT09
-
Probing Black Holes with Gravitational Waves and Shadows
Sebastian Volkel SISSA International School for Advanced Studies
In this talk I will outline recent attempts to probe black holes in the strong gravity regime. The access to gravitational wave emission from binary black hole mergers and images of supermassive black holes allow for new tests of general relativity. After reviewing recent activities, I will outline how quasi-normal modes and shadow images can be used to study possible deviations from general relativity. Finally, I will discuss open problems that need to be addressed in the future.
-
Generalized Non-local R^2-like inflation and its Universal predictions
Sravan Kumar Tokyo Institute of Technology
Cosmic inflation is an important paradigm of the early Universe which is so far developed in two equivalent ways, either by geometrical modification of Einstein's general relativity (GR) or by introducing new forms of matter beyond the standard model of particle physics. Starobinsky's R+R^2 inflation based on a geometric modification of GR is one of the most observationally favorable models of cosmic inflation based on a geometric modification of GR. In this talk, I will discuss in detail the fundamental motivations for Starobinsky inflation and present how certain logical steps in the view of its UV completion lead to the emergence of a gravity theory that is non-local in nature. Then I will establish how one can perform studies of the early Universe in the context of non-local gravity and what are the observational consequences in the scope of future CMB and gravitational waves. I will discuss in detail how non-local R^2-like inflation can be observationally distinguishable from the local effective field theories of inflation.
-
Unbiasing Fermionic Quantum Monte Carlo with a Quantum Computer
William Huggins Google
Many-electron problems pose some of the greatest challenges in computational science, with important applications across many fields of modern science. Fermionic quantum Monte Carlo (QMC) methods are among the most powerful approaches to these problems. However, they can be severely biased when controlling the fermionic sign problem using constraints, as is necessary for scalability. Here we propose an approach that combines constrained QMC with quantum computing tools to reduce such biases. We experimentally implement our scheme using up to 16 qubits in order to unbias constrained QMC calculations performed on chemical systems with as many as 120 orbitals. These experiments represent the largest chemistry simulations performed on quantum computers (more than doubling the size of prior electron correlation calculations), while obtaining accuracy competitive with state-of-the-art classical methods. Our results demonstrate a new paradigm of hybrid quantum-classical algorithm, surpassing the popular variational quantum eigensolver in terms of potential towards the first practical quantum advantage in ground state many-electron calculations.
-
Goldilocks modes in celestial CFT
Andrea Puhm University of Amsterdam
In this talk I will consider massless scattering from the point of view of the position, momentum, and celestial bases with a view to advancing a holographic principle for asymptotically flat spacetimes. Within the soft sector, these different languages highlight distinct aspects of the 'infrared triangle': quantum field theory soft theorems arise in the limit of vanishing energy, memory effects are described via shifts of fields along retarded time, and celestial symmetry algebras are realized via currents that appear at special values of the conformal dimension. The latter are determined by the global conformal multiplets in celestial CFT referred to as 'celestial diamonds'. These diamonds degenerate beyond the leading universal soft modes and the standard interpretation of the infrared triangle breaks down: we have neither an obvious asymptotic symmetry nor a Goldstone mode but we do have a soft theorem, and hence a version of a memory effect. I will discuss various aspects of celestial CFT surrounding these Goldstone-like, or Goldilocks, modes and their canonically paired memory modes. They play an important role in constraining celestial OPEs and for understanding the interpretation and implications of the (semi-)infinite tower of tree-level symmetry currents which may pose powerful constraints on consistent low energy effective field theories.
Zoom Link: https://pitp.zoom.us/j/95785822777?pwd=cVJWYVJBS1E3aDJPT1ZSTmlZbzVQQT09
-
Axion echos from supernovae remnants
JiJi Fan Brown University
Stimulated decays of axion dark matter, triggered by a source in the sky, could produce a photon flux along the continuation of the line of sight, pointing backward to the source. The strength of this so-called axion “echo” signal depends on the entire history of the source and could still be strong from sources that are dim today but had a large flux density in the past, such as supernova remnants (SNRs). This echo signal turns out to be most observable in the radio band. I will present the sensitivity of radio telescopes such as the Square Kilometer Array (SKA) to echo signals generated by SNRs that have already been observed. In addition, I will show projections of the detection reach for signals from newly born supernovae that could be detected in the future. Intriguingly, an observable echo signal could come from old “ghost” SNRs which were very bright in the past but are now so dim that they haven’t been observed.
Zoom Link: https://pitp.zoom.us/j/91076203387?pwd=UzNva3N4Zi9mV3BkMlJvUnhtRXRZdz09
-
Getting the most out of your measurements: neural networks and active learning
Annabelle Bohrdt Harvard University
Recent advances in quantum simulation experiments have paved the way for a new perspective on strongly correlated quantum many-body systems. Digital as well as analog quantum simulation platforms are capable of preparing desired quantum states, and various experiments are starting to explore non-equilibrium many-body dynamics in previously inaccessible regimes in terms of system sizes and time scales. State-of-the art quantum simulators provide single-site resolved quantum projective measurements of the state. Depending on the platform, measurements in different local bases are possible. The question emerges which observables are best suited to study such quantum many-body systems.
In this talk, I will cover two different approaches to make the most use of these possibilities. In the first part, I will discuss the use of machine learning techniques to study the thermalization behavior of an interacting quantum system. A neural network is trained to distinguish non-equilibrium from thermal equilibrium data, and the network performance serves as a probe for the thermalization behavior of the system. We apply this method to numerically simulated data, as well experimental snapshots of ultracold atoms taken with a quantum gas microscope.
In the second part of this talk, I will present a scheme to perform adaptive quantum state tomography using active learning. Based on an initial, small set of measurements, the active learning algorithm iteratively proposes the basis configurations which will yield the maximum information gain. We apply this scheme to GHZ states of a few qubits as well as ground states of one-dimensional lattice gauge theories and show an improvement in accuracy over random basis configurations.
-
Null Surface Thermodynamics
Mohammad M Sheikh-Jabbari Institute for Research in Fundamental Sciences (IPM)
We study D dimensional pure Einstein gravity theory in a region of spacetime bounded by a generic null boundary. We show besides the graviton modes propagating in the bulk, the system is described by boundary degrees of freedom labeled by D surface charges associated with nontrivial diffeomorphisms at the boundary. We establish that the system admits a natural thermodynamical description. Using standard surface charge analysis and covariant phase space method, we formulate laws of null surface thermodynamics which are local equations over an arbitrary null surface. This thermodynamical system is generally an open system and can be closed only when there is no flux of gravitons through the null surface. Our analysis extends the usual black hole thermodynamics to a universal feature of any area element on a generic null surface in a generic diffeomorphism invariant theory of gravity.
Zoom Link: https://pitp.zoom.us/j/91590041045?pwd=UXpWY3JEd0QwK2hXanBzSkdPRC94UT09
-
Ultralocality and the robustness of slow contraction to cosmic initial conditions
Anna Ijjas Max Planck Institute for Gravitational Physics - Albert Einstein Institute (AEI)
I will discuss the detailed process by which slow contraction smooths and flattens the universe using an improved numerical relativity code that accepts initial conditions with non-perturbative deviations from homogeneity and isotropy along two independent spatial directions. Contrary to common descriptions of the early universe, I will show that the geometry first rapidly converges to an inhomogeneous, spatially-curved, and anisotropic ultralocal state in which all spatial gradient contributions to the equations of motion decrease as an exponential in time to negligible values. This is followed by a second stage in which the geometry converges to a homogeneous, spatially flat, and isotropic spacetime. In particular, the decay appears to follow the same history whether the entire spacetime or only parts of it are smoothed by the end of slow contraction.
Zoom Link: https://pitp.zoom.us/j/95441238892?pwd=TUh4Mjh1MHJ6TDNCL0V1NUk5WWFZQT09
-
Comments on Euclidean wormholes and holography
Panagiotis Betzios University of British Columbia
Euclidean wormholes are exotic types of gravitational solutions that we still don't understand completely. In the first part of the talk, I will analyze asymptotically AdS wormhole solutions from a gravitational point of view. By studying correlation functions of local and non-local operators, the universal properties that any putative holographic dual should exhibit, become manifest. In the second part, I will describe some concrete field theoretic models (both effective and microscopic) that share these properties.
-
Ionization of Gravitational Atoms
John Stout Harvard University
Superradiant instabilities may create clouds of ultralight bosons around black holes, forming so-called “gravitational atoms.” It was recently shown that the presence of a binary companion can induce resonant transitions between a cloud's bound states. When these transitions backreact on the binary's orbit, they lead to qualitatively distinct signatures in the gravitational waveform that can dominate the overall behavior of the inspiral. In this talk, I will show that the interaction with the companion can also trigger transitions from bound to unbound states of the cloud---a process which I will refer to as ``ionization,'' in analogy with the photoelectric effect in atomic physics. Here, too, there is a type of resonance with a similarly distinct signature, which may ultimately be used to detect any dark ultralight bosons that exist in our universe.
Zoom Link: https://pitp.zoom.us/j/97300299361?pwd=azhmVTR5VmpPQ1hwbkVHTUsrOGlJZz09
-
Cooling quantum systems with quantum information processing
Nayeli Azucena Rodríguez Briones Technische Universität Wien
The field of quantum information provides fundamental insight into central open questions in quantum thermodynamics and quantum many-body physics, such as the characterization of the influence of quantum effects on the flow of energy and information. These insights have inspired new methods for cooling physical systems at the quantum scale using tools from quantum information processing. These protocols not only provide an essentially different way to cool, but also go beyond conventional cooling techniques, bringing important applications for quantum technologies. In this talk, I will first review the basic ideas of algorithmic cooling and give analytical results for the achievable cooling limits for the conventional heat-bath version. Then, I will show how the limits can be circumvented by using quantum correlations. In one algorithm I take advantage of correlations that can be created during the rethermalization step with the heat-bath and in another I use correlations present in the initial state induced by the internal interactions of the system. Finally, I will present a recently fully characterized quantum property of quantum many-body systems, in which entanglement in low-energy eigenstates can obstruct local outgoing energy flows.