Search results in Astrophysics from PIRSA
Format results
-
-
-
-
Scale-free primordial cosmology
Anna Ijjas Max Planck Institute for Gravitational Physics - Albert Einstein Institute (AEI)
-
holographic path to the turbulent side of gravity
-
Adam Brown Stanford University
-
Stephen Green University of Nottingham
-
-
-
-
-
Supersymmetry, Non-thermal Dark Matter and Precision Cosmology
Scott Watson Syracuse University
-
-
BiGravity: from Cosmological Solutions to Dual Galileons
Matteo Fasiello University of Portsmouth
-
N-body lensed CMB maps: lensing extraction and characterization
Claudia Antolini SISSA International School for Advanced Studies
-
Cosmic Variance from Superhorizon Mode Coupling
We observe a finite subvolume of the universe, so CMB and large scale structure data may give us either a representative or a biased sample of statistics in the larger universe. Mode coupling (non-Gaussianity) in the primordial perturbations can introduce a bias of parameters measured in any subvolume due to coupling to superhorizon background modes longer than the size of the subvolume. This leads to a "cosmic variance" of statistics on smaller scales, as the long-wavelength background modes vary around the global mean. We study this bias for local non-Gaussianity and quantify how observed statistics such as the power spectrum of the primordial perturbations, spectral index (scale-dependence in the power spectrum), amplitude of non-Gaussianity, dark matter halo power spectrum, and primordial tensor modes, can differ from the same quantities averaged throughout a volume much larger than the observable universe. More general kinds of mode coupling can change the relative sensitivity to different background modes. Finally, we consider what observations can tell us about the possibility of biasing from superhorizon modes." -
The McV black hole and the scalar theories that support it
Systems in which the local gravitational attraction is coupled to the expansion of the Universe have been studied since the early stages of General Relativity as the pioneering works of McVittie show. In this talk I start reviewing the McVittie black hole solution and its variable mass generalization from a classical fluid approach to understand its properties. I then move to a field theoretical analysis to investigate the scalar theories that support such black holes. -
Simulating the Universe(s)
Matthew Johnson York University
The theory of eternal inflation in an inflaton potential with multiple vacua predicts that our universe is one of many bubble universes nucleating and growing inside an ever-expanding false vacuum. The collision of our bubble with another could provide an important observational signature to test this scenario. In this talk I will describe an algorithm for accurately computing the cosmological observables arising from bubble collisions directly from the Lagrangian of a single scalar field. This represents the first fully-relativistic set of predictions from an ensemble of scalar field models giving rise to eternal inflation, and I will describe on-going phenomenological studies and observational searches. -
Scale-free primordial cosmology
Anna Ijjas Max Planck Institute for Gravitational Physics - Albert Einstein Institute (AEI)
The large-scale structure of the universe suggests that the physics underlying its early evolution is scale-free. In this talk, using a hydrodynamic approach, I will discuss how the scale-free principle restores predictive power and makes it possible to evaluate inflationary models and to compare them with alternative cosmologies. -
holographic path to the turbulent side of gravity
-
Adam Brown Stanford University
-
Stephen Green University of Nottingham
We study the dynamics of a 2+1 dimensional relativistic viscous conformal fluid in Minkowski spacetime. Such fluid solutions arise as duals, under the "gravity/fluid correspondence", to 3+1 dimensional asymptotically anti-de Sitter (AAdS) black brane solutions to the Einstein equation. We examine stability properties of shear flows, which correspond to hydrodynamic quasinormal modes of the black brane. We find that, for sufficiently high Reynolds number, the solution undergoes an inverse turbulent cascade to long wavelength modes. We then map this fluid solution, via the gravity/fluid duality, into a bulk metric. This suggests a new and interesting feature of the behavior of perturbed AAdS black holes and black branes, which is not readily captured by a standard quasinormal mode analysis. Namely, for sufficiently large perturbed black objects (with long-lived quasinormal modes), nonlinear effects transfer energy from short to long wavelength modes via a turbulent cascade within the metric perturbation. As long wavelength modes have slower decay, this lengthens the overall lifetime of the perturbation. We also discuss various implications of this behavior, including expectations for higher dimensions, and the possibility of predicting turbulence in more general gravitational scenarios." -
-
Partially Massless Gravity
On de Sitter space, there exists a special value for the mass of a graviton for which the linear theory propagates 4 rather than 5 degrees of freedom. If a fully non-linear version of the theory exists and can be coupled to known matter, it would have interesting properties and could solve the cosmological constant problem. I will describe evidence for and obstructions to the existence of such a theory. -
Consistency of Massive Gravity
Lavinia Heisenberg ETH Zurich
Recently there has been a successful non-linear covariant ghost-free generalization of Fierz-Pauli massive gravity theory, the dRGT theory. I will explore the cosmology in the decoupling limit of this theory. Furthermore, I will construct a Proxy theory to dRGT from the decoupling limit and study the cosmology there as well and compare the results. Finally, I will discuss the quantum consistency of the theory. -
-
Supersymmetry, Non-thermal Dark Matter and Precision Cosmology
Scott Watson Syracuse University
Within the Minimal Supersymmetric Standard Model (MSSM), LHC bounds suggest that scalar superpartner masses are far above the electroweak scale. Given a high superpartner mass, nonthermal dark matter is a viable alternative to WIMP dark matter generated via freezeout. In the presence of moduli fields nonthermal dark matter production is associated with a long matter dominated phase, modifying the spectral index and primordial tensor amplitude relative to those in a thermalized primordial universe. Nonthermal dark matter can have a higher self-interaction cross-section than its thermal counterpart, enhancing astrophysical bounds on its annihilation signals. I will review recent progress in this program, and discuss how we can constrain the contributions to the neutralino mass from the bino, wino and higgsino using existing astrophysical bounds and direct detection experiments for models with nonthermal neutralino dark matter. Using these constraints we will then see how expected changes to inflationary observables result from the nonthermal phase. -
Acceleration, Then and Now
Cliff Burgess McMaster University
There is good evidence that the universe underwent an epoch of accelerated expansion sometime in its very early history, and that it is entering a similar phase now. This talk is in two parts. The first part describes what I believe to be the take-home message about inflationary models, coming both from the recent Planck results and from attempts to embed inflation within a UV completion (string theory). I will argue that both point to a particularly interesting class of inflationary models that also evade many of the tuning problems of inflation. These models also turn out to make the tantalizing prediction that the scalar-to-tensor ratio, r, could be just out of reach, being predicted to be proportional to (n_s - 1)^2, where n_s ~ 0.96 is the spectral tilt of the scalar spectrum. The second part provides an update on an approach to solving the "cosmological constant problem", which asks why the vacuum energy seems to gravitate so little. This is the main theoretical obstruction that makes it so difficult to understand the origins of the present epoch of acceleration. In the approach described - Supersymmetric Large Extra Dimensions - observations can be reconciled with a large vacuum energy because the vacuum energy curves the extra dimensions and not the ones measured in cosmology. It leads to a picture of very supersymmetric gravity sector coupled to a completely non-supersymmetric particle-physics sector (which predicts in particular no superpartners to be found at the LHC). The update presented here summarizes the underlying mechanism whereby supersymmetry in the extra dimensions acts to suppress the gravitational effects of quantum fluctuations. Because the large quantum contributions are under control it becomes possible to estimate the size of to be expected of the observed dark energy. For the simplest configuratin the result is of order C (m Mg/4 pi Mp)^4, where m is the heaviest particle on the branes (and so no smaller than the top quark mass), Mg is the extra-dimensional gravity scale (no smaller than 10 TeV due to astrophysical constraints, implying two extra dimensions that are of order a micron in size) and Mp is the 4D Planck mass. C is a constant unsuppressed by symmetry-breaking effects, and C = 6 x 10^6 gives the observed dark energy density, using the smallest values given above for m and Mg. If there is time I will sketch arguments as to why there must be other light degrees of freedom in the theory as well, whose implications might ultimately be used to test the picture. -
BiGravity: from Cosmological Solutions to Dual Galileons
Matteo Fasiello University of Portsmouth
I will present Cosmological FRW Solutions in BiGravity Theories and discuss their stability. After deriving the stability bound, one realizes that in Bigravity (in contradistinction to the FRW massive gravity case) the tension between requirements stemming from stability and those set by observations is resolved. The stability bound can also be derived in the decoupling limit of Bigravity. In this context an intriguing duality between Galilean interactions has emerged. -
N-body lensed CMB maps: lensing extraction and characterization
Claudia Antolini SISSA International School for Advanced Studies
After multiple high precision detections (ACT, SPT, Planck) gravitational lensing has become a new source of relevant cosmological information: combining it with other probes (e.g. the large scale structure) can give significant insight on the evolution of the Dark Energy component. Developing new algorithms of estimate of this signal will allow the community to exploit this observable as a new and independent probe in cosmology. In my talk I will present the reconstruction of the lensing shear pattern and its angular power spectrum from total intensity and polarised CMB maps obtained using Born approximated ray-tracing through N-body simulated structures.The recovered spectra are in agreement with predictions of the underlying ΛCDM with no visible bias, on a scale interval which extends from the arcminute to several degrees over the sky. This demonstrates the feasibility of CMB lensing studies based on large scale simulations of cosmological structure formation in the context of the upcoming large observational campaigns.