Video URL
https://pirsa.org/18050009CMB Foregrounds: Problems, Parameterizations, and Progress
Colin Hill Columbia University
Abstract
The next frontiers in cosmic microwave background (CMB) science include a detailed mapping of the CMB polarization anisotropy, with goals of detecting the inflationary B-mode signal and reconstructing high-fidelity maps of the matter distribution via CMB lensing, as well as a first detection of CMB spectral distortions. At this level of precision (~nK), Galactic and extragalactic foregrounds may be the ultimate limiting factor in deriving cosmological constraints. I will discuss biases due to foregrounds in CMB lensing measurements, including the first calculation of the lensing bias due to the kinematic Sunyaev-Zel’dovich effect, as well as recent progress in developing novel foreground-free CMB lensing estimators. I will then present methods to extend CMB foreground parameterizations in a systematic, flexible way, with applications to both polarization and spectral distortion measurements. Using this framework, I will discuss spectral distortion forecasts for CMB spectrometer mission concepts, showing that high-significance measurements of the Compton-y and relativistic thermal Sunyaev-Zel’dovich signals can be expected, as well as a potential detection of the primordial mu-type distortion due to Silk damping of small-scale acoustic modes.