PIRSA:13120066

holographic path to the turbulent side of gravity

APA

Brown, A. & Green, S. (2013). holographic path to the turbulent side of gravity. Perimeter Institute for Theoretical Physics. https://pirsa.org/13120066

MLA

Brown, Adam, and Stephen Green. holographic path to the turbulent side of gravity. Perimeter Institute for Theoretical Physics, Dec. 12, 2013, https://pirsa.org/13120066

BibTex

          @misc{ scivideos_PIRSA:13120066,
            doi = {10.48660/13120066},
            url = {https://pirsa.org/13120066},
            author = {Brown, Adam and Green, Stephen},
            keywords = {Cosmology},
            language = {en},
            title = {holographic path to the turbulent side of gravity},
            publisher = {Perimeter Institute for Theoretical Physics},
            year = {2013},
            month = {dec},
            note = {PIRSA:13120066 see, \url{https://scivideos.org/pirsa/13120066}}
          }
          
Talk numberPIRSA:13120066
Source RepositoryPIRSA
Talk Type Scientific Series
Subject

Abstract

We study the dynamics of a 2+1 dimensional relativistic viscous conformal fluid in Minkowski spacetime. Such fluid solutions arise as duals, under the "gravity/fluid correspondence", to 3+1 dimensional asymptotically anti-de Sitter (AAdS) black brane solutions to the Einstein equation. We examine stability properties of shear flows, which correspond to hydrodynamic quasinormal modes of the black brane. We find that, for sufficiently high Reynolds number, the solution undergoes an inverse turbulent cascade to long wavelength modes. We then map this fluid solution, via the gravity/fluid duality, into a bulk metric. This suggests a new and interesting feature of the behavior of perturbed AAdS black holes and black branes, which is not readily captured by a standard quasinormal mode analysis. Namely, for sufficiently large perturbed black objects (with long-lived quasinormal modes), nonlinear effects transfer energy from short to long wavelength modes via a turbulent cascade within the metric perturbation. As long wavelength modes have slower decay, this lengthens the overall lifetime of the perturbation. We also discuss various implications of this behavior, including expectations for higher dimensions, and the possibility of predicting turbulence in more general gravitational scenarios."