Format results
- Shinsuke IwaoICTS:30056
Gauge theories and boundaries: from superselection to soft modes and memory
Aldo Riello Perimeter Institute for Theoretical Physics
Superconducting Nanowire Single Photon Detectors for Intensity Interferometry
Ioana Craiciu National Aeronautics and Space Administration
Cluster Reductions, Mutations, and q-Painlev'e Equations
Mykola Semenyakin Perimeter Institute for Theoretical Physics
High Throughput Single Photon Detection for effective SII
Verena Leopold Quantum Optics and Quantum Information, FAU Erlangen
The relativistic Toda Lattice and quantum K-Schubert classes of the flag variety
Shinsuke IwaoICTS:30056The quantum K-theory of the flag variety is a ring defined by introducing a quantum product to the K-theory of the flag variety. Under appropriate localization, it is known that the following three rings (i), (ii), and (iii) are isomorphic, and this property allows for a detailed investigation of each ring: (i)the coordinate ring of the phase space of the relativistic Toda lattice, (ii) the quantum equivariant K-theory of the flag variety, and (iii) the K-equivariant homology ring of the affine Grassmannian.
The isomorphism between (i) and (ii) is derived from the Lax formalism of the relativistic Toda lattice [Ikeda-Iwao-Maeno]. The isomorphism between (ii) and (iii) is referred to as the K-Peterson isomorphism [Lam-Li-Mihalcea-Shimozono, Kato, Chow-Leung, Ikeda-Iwao-Maeno]. In this talk, I will outline how techniques from classical integrable systems, such as the construction of algebraic solutions and Bäcklund transformations, are applied to the study of geometry. This talk is ba...
Moments of L-functions (Online)
Mathew P. YoungICTS:30185In this series of lectures, I will give an introduction to the theory of moments of L-functions. I will focus on important examples, such as the moments of the Riemann zeta function and Dirichlet L-functions, as well as some GL_2 families. I will also present some of the important tools for understanding moments, as well as applications of moments.
Applied l-adic cohomology, I (RL 4)
Philippe MichelICTS:30184The notion of congruence (modulo an integer q) was formalised by C. F. Gauss in his Disquisitiones arithmeticae. This is a basic yet fundamental concept in all aspects of number theory. Indeed congruences allow to evaluate and compare integers in way considerably richer than the archimedean order alone permits.
In analytic number theory, several outstanding question -starting with Dirichlet’s theorem on primes in arithmetic progressions- reduce to the of measuring whether some classical arithmetic function (say the characteristic function of prime numbers) correlate with suitable q periodic functions for instance Gauss sums, Jacobi sums or Kloosterman sums. It turns out that these functions, when the modulus q is a prime (to which one can reduce via the Chinese Reminder Theorem) can be recognised as « trace functions». The study of trace functions was initiated by A. Weil in the 1940’s and was pursued by A. Grothendieck in the second half of the century with his refoundation of alge...
Gauge theories and boundaries: from superselection to soft modes and memory
Aldo Riello Perimeter Institute for Theoretical Physics
I present an overview of the work I have done over the last few years on the phase space structure of gauge theories in the presence of boundaries. Starting with primers on the covariant phase space and symplectic reduction, I then explain how their generalization when boundaries are present fits into the reduction-by-stages framework. This leads me to introduce the concept of (classical) superselection sectors, whose physical meaning is clarified by a gluing theorem. Applying the framework developed this far to a null hypersurface, I then discuss how the extension of the Ashtekar-Streubel symplectic structure by soft modes emerges naturally, and how electric memory ties to superselection. If time allows, and depending on the audience’s interests, I will finally compare reduction-by-stages with the edge-mode formalism or discuss its relation to dressings and “gauge reference frames”. An overarching theme will be the nonlocal nature of gauge theories. This seminar is based on work done with Gomes and Schiavina. References: The general framework: 2207.00568 Null Yang-Mills: 2303.03531 Gluing: 1910.04222 A pedagogical introduction: 2104.10182 Dressings and reference frames: 1808.02074, 2010.15894, 1608.08226The QUASAR project : Resolving Accretion Disks with Quantum Optics
Roland WalterAccretion flows aroud black-holes, neutron stars or white dwarfs are studied since almost 60 years. Although they are ubiquitous and somewhat similar over scales reaching billions in mass and size, their study has been limited because they remain unresolved point like sources in the optical/ultraviolet and X-rays, where they emit. Two main modes of accretion have been identified in Active Galactic Nuclei. In most sources the accretion rate is low and a high pressure, low density, low collision rate, optically thin, radiatively inefficient, two temperature plasma can form (Shapiro 1976; Narayan & Yi 1994,1995). This solution is stable only for low luminosities (<1% LEDD). The Event Horizon Telescope has recently resolved such flows in Sgr A and M87, confirmed several aspects of the model and could detect particles accelerated close to the horizon of Sgr A (Wielgus, 2022) a likely signature of the Blandford-Znajek (1977) process. When the accretion rate is higher, momentum can be dissipated by viscosity and the flow proceeds via geometrically thin disk-shaped structures. These accretion disks provide feedback to their environment by accelerating winds and launching jets in their central regions. The apparent size of accretion disks are of the order of 1-40µarcsec in nearby quasars, Seyfert galaxies and galactic cataclysmic variables and of 0.1-1µarcsec in of low mass X-ray binaries in our Galaxy. Hanbury-Brown & Twiss (1954) invented intensity interferometry and measured the size of some bright stars by correlating the arrival times of photons detected by two optical telescopes. The physics has been explained as a quantum effect in the early 60s (Fano 1961) and has triggered the development of quantum optics (Glauber 1963). Its root is found in the quantum theory of statistical fluctuations in an ideal gas (Einstein 1925). The achievable signal-to-noise depends on the telescope size, the detector time resolution, and the number of spectral channels observed simultaneously. Extremely large telescope and 10ps resolution single photon detectors bring the key improvements to reach in the optical angular resolutions better than these achieved in the radio by the Event Horizon Telescope and to obtain the first images of accretion disks around galactic and extragalactic compact objects, a breakthrough. I will present the goals and the status of the QUASAR project, which started one year ago, aiming at bringing a 10ps resolution optical spectrometer on very large telescope.METRICS and its use to probe fundamental physics with black-hole ringdown phase
Quasinormal modes of a black hole are closely related to the dynamics of the spacetime near the horizon. In this connection, the black hole ringdown phase is a powerful probe into the nature of gravity. However, the challenge of computing quasinormal mode frequencies has meant that ringdown tests of gravity have largely remained model-independent. In this talk, I will introduce Metric pErTuRbations wIth speCtral methodS (METRICS) [1], a novel spectral scheme capable of accurately computing the quasinormal mode frequencies of black holes, including those with modifications beyond Einstein's theory or the presence of matter. I will demonstrate METRICS' accuracy in calculating quasinormal mode frequencies within general relativity, as a validation, and its application to Einstein-scalar-Gauss-Bonnet gravity [2, 3], an example of modified gravity theory to which METRICS has been applied. I will also present preliminary results from applying METRICS to dynamical Chern-Simons gravity. Finally, I will discuss potential future applications of METRICS beyond computing black hole quasinormal modes. [1]: https://arxiv.org/abs/2312.08435 [2]: https://arxiv.org/abs/2405.12280 [3]: https://arxiv.org/abs/2406.11986Superconducting Nanowire Single Photon Detectors for Intensity Interferometry
Ioana Craiciu National Aeronautics and Space Administration
Superconducting nanowire single photon detectors (SNSPDs) are of interest for intensity interferometry measurements because they have picosecond timing resolution. In addition, they work from the UV to mid-IR, with excellent eOiciency at visible and near-IR wavelengths, and are being fabricated into ever-larger detector arrays. On behalf of my colleagues in the JPL SNSPD group, I will present on the Deep Space Optical Communication (DSOC) demonstration, in which an SNSPD array was coupled to the 5 mHale telescope at Palomar, and received data at 267 Mbps from the Psyche spacecraft, the first optical communication between Earth and interplanetary space. The DSOC infrastructure at Palomar is suitable for intensity interferometry, as demonstrated by g(2) correlation (photon bunching) measurements of the stars Rigel and Procyon. I will also describe our current work on SNSPD array readout schemes, extending detector sensitivity into the mid-IR, and improving the system timing jitter of SNSPD arrays.Cluster Reductions, Mutations, and q-Painlev'e Equations
Mykola Semenyakin Perimeter Institute for Theoretical Physics
In my talk I will explain how to extend the Goncharov-Kenyon class of cluster integrable systems by their Hamiltonian reductions. In particular, this extension allows to fill in the gap in cluster construction of the q-difference Painlev'e equations. Isomorphisms of reduced Goncharov-Kenyon integrable systems are given by mutations in another, dual in non-obvious sense, cluster structure. These dual mutations cause certain polynomial mutations of dimer partition functions and polygon mutations of the corresponding decorated Newton polygons.
High Throughput Single Photon Detection for effective SII
Verena Leopold Quantum Optics and Quantum Information, FAU Erlangen
In this talk we want to promote a new kind of single photon detector able to record high count rates with the prospect of making stellar intensity interferometry (SII) measurements more effective. This micro-channel plate based photomultiplier tube from Photonscore (LINPix) is nearly dead time free and offers an active area of 8mm diameter. By choosing a matching photocathode, the quantum efficiency (QE) can take values greater than 30% at the desired wavelength. Using a Hi-QE Blue photocathode in a testbench featuring a fs-pulsed laser we were able to measure the timing resolution of the LINPix at different count rates from 190kHz up to 95 MHz. We find that the timing resolution of the detector only increases marginally when increasing the laser power and stays well below 100ps. Hence, we conclude that together with the LINTag, a suitable time to digital converter from Photonscore able to process the high throughput, this system can contribute significantly to the further development of SII.