Search results from ICTS-TIFR
Format results
-
-
-
-
-
-
-
-
-
-
-
-
Dissipation and mixing: from turbulent flows to weak solutions - I
László Székelyhidi (Distinguished lecture)ICTS:29923
-
Regularization by noise - IV
Mario MaurelliICTS:29917We say that an ordinary or partial differential equation is regularized by noise if the addition of a suitable noise term restores well-posedness or improves regularity of the solution to the equation. Regularization by noise is by now well understood for ODEs and linear transport-type PDEs, but it is less understood for nonlinear PDEs like Euler and Navier-Stokes equations, with many open questions.
In the first part of this series of lectures, we consider the case of ODEs and associated transport equations with irregular drift: we show that the addition of an additive Brownian noise restores well-posedness of the ODE; we introduce the corresponding transport noise and show that this noise restores well-posedness for the associated transport equation. In the second part, we focus our attention on the effect of a particular transport-type noise, which is divergence-free, Gaussian, white in time and poorly correlated in space (nonsmooth Kraichnan noise). The associated linear transpo...
-
The Onsager theorem and beyond (RL1)
Camillo De LellisICTS:29931In 1949 Onsager conjectured the existence of Hoelder continuous solutions of the incompressible Euler equations which do not conserve the kinetic energy. A rigorous proof of his statement has been given by Isett in 2017, crowning a decade of efforts in the subject. Onsager's original statement is however motivated by anomalous dissipation in the Navier-Stokes equations: roughly speaking it would be desirable to show that at least some dissipative Euler flow is the ``vanishing viscosity limit''. In these lectures I will review the basic ideas of the first iteration invented by La'szlo' Sze'kelyhidi Jr. and myself to produce continuous solutions which dissipate the total kinetic energy. I will then review the developments which lead Isett to solve the Onsager conjecture and touch upon the new challenges which lie ahead.
-
Dissipation and mixing: from turbulent flows to weak solutions - IV
László SzékelyhidiICTS:29926There is a well-known discrepancy in mathematical fluid mechanics between phenomena that we can observe and phenomena on which we have theorems. The challenge for the mathematician is then to formulate an existence theory of solutions to the equations of hydrodynamics which is able to reflect observation. The most important such observation, forming the backbone of turbulence theory, is anomalous dissipation. In the talk, we survey some of the recent developments concerning weak solutions in this context.
-
Wavelet-inspired Nash’s iteration - III
Hyunju KwonICTS:29921In the recent resolution of the strong Onsager’s conjecture in L^3 framework, so-called wavelet-inspired Nash’s iteration has been developed. In this lecture, we will sketch this new method and provide the necessary background. The lecture will be based on our recent joint work with Matthew Novack.
-
Regularization by noise - III
Mario MaurelliICTS:29916We say that an ordinary or partial differential equation is regularized by noise if the addition of a suitable noise term restores well-posedness or improves regularity of the solution to the equation. Regularization by noise is by now well understood for ODEs and linear transport-type PDEs, but it is less understood for nonlinear PDEs like Euler and Navier-Stokes equations, with many open questions.
In the first part of this series of lectures, we consider the case of ODEs and associated transport equations with irregular drift: we show that the addition of an additive Brownian noise restores well-posedness of the ODE; we introduce the corresponding transport noise and show that this noise restores well-posedness for the associated transport equation. In the second part, we focus our attention on the effect of a particular transport-type noise, which is divergence-free, Gaussian, white in time and poorly correlated in space (nonsmooth Kraichnan noise). The associated linear transpo...
-
Dissipation and mixing: from turbulent flows to weak solutions - III
László SzékelyhidiICTS:29925There is a well-known discrepancy in mathematical fluid mechanics between phenomena that we can observe and phenomena on which we have theorems. The challenge for the mathematician is then to formulate an existence theory of solutions to the equations of hydrodynamics which is able to reflect observation. The most important such observation, forming the backbone of turbulence theory, is anomalous dissipation. In the talk, we survey some of the recent developments concerning weak solutions in this context.
-
Wavelet-inspired Nash’s iteration - II
Hyunju KwonICTS:29920In the recent resolution of the strong Onsager’s conjecture in L^3 framework, so-called wavelet-inspired Nash’s iteration has been developed. In this lecture, we will sketch this new method and provide the necessary background. The lecture will be based on our recent joint work with Matthew Novack.
-
Regularization by noise - II
Mario MaurelliICTS:29915We say that an ordinary or partial differential equation is regularized by noise if the addition of a suitable noise term restores well-posedness or improves regularity of the solution to the equation. Regularization by noise is by now well understood for ODEs and linear transport-type PDEs, but it is less understood for nonlinear PDEs like Euler and Navier-Stokes equations, with many open questions.
In the first part of this series of lectures, we consider the case of ODEs and associated transport equations with irregular drift: we show that the addition of an additive Brownian noise restores well-posedness of the ODE; we introduce the corresponding transport noise and show that this noise restores well-posedness for the associated transport equation. In the second part, we focus our attention on the effect of a particular transport-type noise, which is divergence-free, Gaussian, white in time and poorly correlated in space (nonsmooth Kraichnan noise). The associated linear transpo...
-
Dissipation and mixing: from turbulent flows to weak solutions - II
László SzékelyhidiICTS:29924There is a well-known discrepancy in mathematical fluid mechanics between phenomena that we can observe and phenomena on which we have theorems. The challenge for the mathematician is then to formulate an existence theory of solutions to the equations of hydrodynamics which is able to reflect observation. The most important such observation, forming the backbone of turbulence theory, is anomalous dissipation. In the talk, we survey some of the recent developments concerning weak solutions in this context.
-
Regularization by noise -I
Mario MaurelliICTS:29914We say that an ordinary or partial differential equation is regularized by noise if the addition of a suitable noise term restores well-posedness or improves regularity of the solution to the equation. Regularization by noise is by now well understood for ODEs and linear transport-type PDEs, but it is less understood for nonlinear PDEs like Euler and Navier-Stokes equations, with many open questions.
In the first part of this series of lectures, we consider the case of ODEs and associated transport equations with irregular drift: we show that the addition of an additive Brownian noise restores well-posedness of the ODE; we introduce the corresponding transport noise and show that this noise restores well-posedness for the associated transport equation. In the second part, we focus our attention on the effect of a particular transport-type noise, which is divergence-free, Gaussian, white in time and poorly correlated in space (nonsmooth Kraichnan noise). The associated linear transpo...
-
Wavelet-inspired Nash’s iteration - I
Hyunju KwonICTS:29919In the recent resolution of the strong Onsager’s conjecture in L^3 framework, so-called wavelet-inspired Nash’s iteration has been developed. In this lecture, we will sketch this new method and provide the necessary background. The lecture will be based on our recent joint work with Matthew Novack.
-
Dissipation and mixing: from turbulent flows to weak solutions - I
László Székelyhidi (Distinguished lecture)ICTS:29923There is a well-known discrepancy in mathematical fluid mechanics between phenomena that we can observe and phenomena on which we have theorems. The challenge for the mathematician is then to formulate an existence theory of solutions to the equations of hydrodynamics which is able to reflect observation. The most important such observation, forming the backbone of turbulence theory, is anomalous dissipation. In the talk, we survey some of the recent developments concerning weak solutions in this context.