Search results from PIRSA
Format results
-
-
Stacking Induced Spontaneous Polarization in Rhombohedral MoS2
Ziliang Ye University of British Columbia
-
Topological superconductivity in twisted double-layer high-Tc cuprates: Theory and experimental signatures
Marcel Franz University of British Columbia
-
-
Localizing Information in Quantum Gravity and State-dressed Local Operators in AdS/CFT
Alexandre Belin European Organization for Nuclear Research (CERN)
-
Next Generation Axion Dark Matter Searches
Andrew Sonnenschein Fermi National Accelerator Laboratory (Fermilab)
-
Counting the microstates of the cosmic horizon
Vasudev Shyam Stealth Startup
-
On the modeling of black hole ringdown
Naritaka Oshita Kyoto University
-
Introducing Perimeter's Strategic EDI Plan
-
Robert Myers Perimeter Institute for Theoretical Physics
-
-
-
Newton’s Cradle Spectra
Barbara Soda Perimeter Institute for Theoretical Physics
-
-
Recurrent neural networks for many-body physics
Juan Carrasquilla ETH Zurich
I will discuss our recent work on the use of autoregressive neural networks for many-body physics. In particular, I will discuss two approaches to represent quantum states using these models and their applications to the reconstruction of quantum states, the simulation of real-time dynamics of open quantum systems, and the approximation of ground states of many-body systems displaying long-range order, frustration, and topological order. Finally, I will discuss how annealing in these systems can be used for combinatorial optimization where we observe solutions to problems that are orders of magnitude more accurate than simulated and simulated quantum annealing. -
Stacking Induced Spontaneous Polarization in Rhombohedral MoS2
Ziliang Ye University of British Columbia
"The relatively weak van der Waals bond in 2D materials has ushered in a rich new era of stacking engineering. We recently found in rhombohedrally stacked MoS2, a Berry phase contrast between layers can induce an asymmetric interlayer coupling and an out-of-plane spontaneous electrical polarization (1). The polarization direction can be switched via interlayer sliding, forming a new type of ferroelectricity. In addition, we demonstrated that such a polarization can lead to a spontaneous photovoltaic effect without any pn junctions (2). Compared to conventional PV effects, our device shows a similar quantum efficiency with an ultrafast speed and potentially a programmable polarity. The rhombohedrally stacked transition metal dichalcogenides therefore provide a new platform for studying spontaneous polarization at the atomic scale. (1) Jing Liang, et al, arXiv:2209.06966 (2022). (2) Dongyang Yang, et al, Nature Photonics, 16, 469–474 (2022)." -
Topological superconductivity in twisted double-layer high-Tc cuprates: Theory and experimental signatures
Marcel Franz University of British Columbia
Structures composed of two monolayer-thin d-wave superconductors with a twist angle close to 45° are predicted to form a robust, fully gapped topological superconducting phase with spontaneously broken time-reversal symmetry and protected chiral edge modes. In this talk I will briefly review the theory behind the topological phase and discuss recent experimental efforts to fabricate and probe twisted flakes of high-Tc cuprate Bi2Sr2CaCu2O8+δ. Signatures of d-wave symmetry and of spontaneous T-breaking are indeed visible in the device Josephson current response, as detected through Fraunhofer pattern and Shapiro step analysis, and, very recently, a pronounced superconducting diode effect observed in samples near 45° twist but absent in untwisted samples. -
-
Localizing Information in Quantum Gravity and State-dressed Local Operators in AdS/CFT
Alexandre Belin European Organization for Nuclear Research (CERN)
It is well known that quantum information can be strictly localized in quantum field theory. Similarly, one can also localize information in classical gravity up to quantities like the ADM mass which are fixed by the constraints of general relativity. On the other hand, the holographic nature of quantum gravity suggests that information can never be localized deep inside some spacetime region, and is always accessible from the boundary. This is meant to hold as a non-perturbative statement and it remains to be understood whether quantum information can be localized within G_N perturbation theory. In this talk, I will address this problem from the point of view of the AdS/CFT correspondence. I will construct candidate local operators that can be used to localize information deep inside the bulk. They have the following two properties: they act just like standard HKLL operators to leading order at large N, but commute with the CFT Hamiltonian to all orders in 1/N. These operators can only be constructed in a particular class of states which have a large energy variance, for example coherent states corresponding to semi-classical geometries. The interpretation of these operators is that they are dressed with respect to a feature of the state, rather than to the boundary. I will comment on connections with black holes and computations of the Page curve.
Zoom link: https://pitp.zoom.us/j/94678968773?pwd=NUJhOEJmRWxLa3pCVUtVVi9DdkE3QT09
-
Next Generation Axion Dark Matter Searches
Andrew Sonnenschein Fermi National Accelerator Laboratory (Fermilab)
In the early 1980s, axions and WIMPs were identified as promising dark matter candidates. The last forty years have seen a spectacularly successful experimental program attempting to discover the WIMPs, with sensitivity that has by now improved by many orders of magnitude compared to the earliest results. The parallel program to search for axions has made less progress and has reached the necessary sensitivity only over a very limited mass range. However, progress has recently accelerated, with the invention of many new axion detection techniques that may eventually provide a definitive answer to the question of whether the dark matter is made of axions. I will review some of these new developments with emphasis on Fermilab’s program, including ADMX- Extended Frequency Range and Broadband Reflector Experiment for Axion Detection (BREAD).
Zoom link: https://pitp.zoom.us/j/97234421735?pwd=UGNJRWxYMkErRmdWSnJiWTdoOFNaZz09
-
Counting the microstates of the cosmic horizon
Vasudev Shyam Stealth Startup
I will describe a holographic model for the three dimensional de Sitter static patch where the boundary theory is the so called $T\bar{T}+\Lambda_2$ deformation of the conformal field theory dual to AdS_3 quantum gravity. This identification allows us to obtain the cosmic horizon entropy from a microstate count, and the microstates themselves are a dressed version of those that account for the entropy of certain black holes in AdS space. I will also show how the effect of this dressing at the cosmic horizon is to replace the spacetime dependence of the fields of the undeformed holographic CFT with dependence on the indices of large matrices.
Zoom link: https://pitp.zoom.us/j/95396921570?pwd=NGFoOGlGY1ZDU2pnNFRwWit3b2w0Zz09
-
On the modeling of black hole ringdown
Naritaka Oshita Kyoto University
A gravitational wave from a binary black hole merger is an important probe to test gravity. Especially, the observation of ringdown may allow us to perform a robust test of gravity as it is a superposition of excited quasi-normal (QN) modes of a Kerr black hole. The excitation factor is an important quantity that quantifies the excitability of QN modes and is independent of the initial data of the black hole.
In this talk, I will show which QN modes can be important (i.e., have higher excitation factors) and will discuss how we can determine the start time of ringdown to maximally enhance the detectability of the QN modes.
Also, I will introduce my recent conjecture on the modeling of ringdown waveform:
the thermal ringdown model in which the ringdown of a small mass ratio merger involving a spinning black hole can be modeled by the Fermi-Dirac distribution.
Zoom link: https://pitp.zoom.us/j/96739417230?pwd=Tm00eHhxNzRaOEQvaGNzTE85Z1ZJdz09
-
Introducing Perimeter's Strategic EDI Plan
-
Robert Myers Perimeter Institute for Theoretical Physics
Over the last decade, there have been many Perimeter efforts in the realm of EDI, and they have unquestionably enhanced the Institute’s culture. Paradoxically, some of these efforts have illuminated areas where we can do more, and there are still others to be addressed.
In Perimeter’s short life, we’ve built a unique institution, with a culture characterized by intellectual fearlessness and excellence. Yet we can do even better. Our culture is connected to our research. We’re here to make breakthroughs in our understanding of our universe – and breakthroughs are made by thinking in new ways. We can’t afford to leave any great thinkers, or any great ideas, behind.
In 2020, we embarked on a project to develop a coherent, concrete strategic plan to guide Perimeter’s efforts in EDI, in partnership with experts at Shift Health and the Laurier Centre for Women in Science. All members of the Perimeter community have been consulted to ensure that the final strategy is reflective of our whole community.
Our actions to date are a step in an intentional and comprehensive effort to make Perimeter an institute where everyone can thrive and find a sense of belonging.
Zoom link: https://pitp.zoom.us/j/93399374837?pwd=QlBTSnluRk84L2x0eE0zYXlGQ0JFZz09
-
-
On the system loophole of generalized noncontextuality
Victor Gitton ETH Zurich
Generalized noncontextuality is a well-studied notion of classicality that is applicable to a single system, as opposed to Bell locality. It relies on representing operationally indistinguishable procedures identically in an ontological model. However, operational indistinguishability depends on the set of operations that one may use to distinguish two procedures: we refer to this set as the reference of indistinguishability. Thus, whether or not a given experiment is noncontextual depends on the choice of reference. The choices of references appearing in the literature are seldom discussed, but typically relate to a notion of system underlying the experiment. This shift in perspective then begs the question: how should one define the extent of the system underlying an experiment? Our paper primarily aims at exposing this question rather than providing a definitive answer to it. We start by formulating a notion of relative noncontextuality for prepare-and-measure scenarios, which is simply noncontextuality with respect to an explicit reference of indistinguishability. We investigate how verdicts of relative noncontextuality depend on this choice of reference, and in the process introduce the concept of the noncontextuality graph of a prepare-and-measure scenario. We then discuss several proposals that one may appeal to in order to fix the reference to a specific choice, and relate these proposals to different conceptions of what a system really is.
arXiv link: https://arxiv.org/abs/2209.04469
Zoom link: https://pitp.zoom.us/j/97393198973?pwd=dWhCOUJQLytxeXVIVmEvOHRnRHc1QT09
-
Newton’s Cradle Spectra
Barbara Soda Perimeter Institute for Theoretical Physics
We present broadly applicable nonperturbative results on the behavior of eigenvalues and eigenvectors under the addition of self-adjoint operators and under the multiplication of unitary operators, in finite-dimensional Hilbert spaces. To this end, we decompose these operations into elementary 1-parameter processes in which the eigenvalues move similarly to the spheres in Newton's cradle. As special cases, we recover level repulsion and Cauchy interlacing. We discuss two examples of applications. Applied to adiabatic quantum computing, we obtain new tools to relate algorithmic complexity to computational slowdown through gap narrowing. Applied to information theory, we obtain a generalization of Shannon sampling theory, the theory that establishes the equivalence of continuous and discrete representations of information. The new generalization of Shannon sampling applies to signals of varying information density and finite length.
Zoom link: https://pitp.zoom.us/j/94120657832?pwd=SmpsWFhhVCtyeXM3a0pVQU9lMGFLdz09
-
Locality bounds on quantum dynamics with measurements
In non-relativistic systems, the Lieb-Robinson Theorem imposes an emergent speed limit (independent of the relativistic limit set by c), establishing locality under unitary quantum dynamics and constraining the time needed to perform useful quantum tasks. We have extended the Lieb-Robinson Theorem to quantum dynamics with measurements. In contrast to the general expectation that measurements can arbitrarily violate spatial locality, we find at most an (M+1)-fold enhancement to the speed of quantum information, provided the outcomes of M local measurements are known; this holds even when classical communication is instantaneous. Our bound is asymptotically optimal, and saturated by existing measurement-based protocols (the "quantum repeater"). Our bound tightly constrain the resource requirements for quantum computation, error correction, teleportation, generating entangled resource states (Bell, GHZ, W, and spin-squeezed states), and preparing SPT states from short-range entangled states.
Zoom Link: https://pitp.zoom.us/j/95640053536?pwd=Z05oWlFRSEFTZWFRK2dwcHdsWlBBdz09