Search results from PIRSA
Format results
-
-
First-Passage Processes in Physics and Beyond
Sidney Redner Santa Fe Institute
-
Quantum-enhanced telescopy
Yunkai Wang Perimeter Institute for Theoretical Physics
-
-
-
Quantum Field Theory II - Lecture 221130
PIRSA:22110011 -
Statistical Physics - Lecture 221130
PIRSA:22110019 -
QFT2 - Quantum Electrodynamics - Afternoon Lecture
Cliff Burgess McMaster University
-
-
Shapes of non-Gaussianity in warm inflation
Mehrdad Mirbabayi Institute for Advanced Study (IAS)
-
-
Exactly solvable model for a deconfined quantum critical point in 1D
Carolyn Zhang University of Chicago
-
Geometric contribution to entanglement entropy and multipartite entanglement in two-dimensional chiral topological liquid
Yuhan Liu University of Chicago
The multipartite entanglement structure for the ground states of two dimensional topological phases is an interesting albeit not well understood question. Utilizing the bulk-boundary correspondence, the tripartite entanglement calculation of 2d topological phases can be reduced to that on the vertex state, defined by the boundary conditions at the interfaces between spatial regions. In this work, we use the conformal interface technique to calculate the entanglement measures of the vertex state, which include the area-law, geometrical and topological pieces, and the possible extra order one contribution. This explains our previous observation of Markov gap h=\frac{c}{3}\ln 2 in the 3-vertex state, and generalizes it to the p-vertex state as well as rational conformal field theory, and more general choices of subsystem. Finally, we support our prediction by numerical evidence.
Zoom link: https://pitp.zoom.us/j/93914854044?pwd=eWl3eGVLU25XUGhKbnFRSm5ab0JuUT09
-
First-Passage Processes in Physics and Beyond
Sidney Redner Santa Fe Institute
A fundamental aspect of a random walk is determining when it reaches a specified threshold position for the first time. This first-passage time, and more generally, the distribution of first passage times underlies many non-equilibrium phenomena, such as the triggering of integrate and fire neurons, the statistics of cell division, and the execution of stock options. The computation of the first-passage time and its distribution is both simple and beautiful, with profound connections to electrostatic potential theory. I will present some aspects of these fundamentals and then discuss applications of first-passage ideas to diverse phenomena, including stochastic search processes and a toy model of wealth sharing.
Zoom link: https://pitp.zoom.us/j/98293478936?pwd=NTR3dWZoNElWRmd2NVJ1bzk5aC9ZQT09
-
Quantum-enhanced telescopy
Yunkai Wang Perimeter Institute for Theoretical Physics
Optical astronomical imaging looks for better imaging quality in extreme cases of weak and subdiffraction limits. I focus on the quantum enhancement of astronomical interferometric imaging, including its fundamental limit and practical issues. For the fundamental aspects, I ignore any resource limit and noise and consider the ideal imaging problems. I show that the resolution limit can be enhanced with more carefully chosen measurement strategies and the general imaging quality can be enhanced by postprocessing the stellar photons with a quantum computer. For the practical aspects, I try to overcome the transmission loss suffered by interferometric imaging using quantum network, consider the possibility to implement a local scheme with better performance, and discuss the feasibility of decomposing thermal states into temporally localized pulses.
-
Learning efficient decoders for quasi-chaotic quantum scramblers
Scrambling of quantum information is an important feature at the root of randomization and benchmarking protocols, the onset of quantum chaos, and black-hole physics.
Unscrambling this information is possible given perfect knowledge of the scrambler [ArXiv: 1710.03363].
We show that one can retrieve the scrambled information without any previous knowledge of the scrambler, by a learning algorithm that allows the building of an efficient decoder. Surprisingly, complex quantum scramblers admit Clifford decoders: the salient properties of a scrambling unitary can be efficiently described even if exponentially complex, as long as it is not fully chaotic. This is possible because all the redundant complexity can be described as an entropy, and for non-chaotic black holes can be efficiently pushed away, just like in a refrigerator. This entropy is not due to thermal fluctuations but to the non-stabilizer behavior of the scrambler.
-
Non-Isometric Quantum Error Correction in Gravity
In the holographic approach to quantum gravity, quantum information theory plays a fundamental role in understanding how semiclassical gravity emerges from the microscopic description. The map (sometimes called the dictionary) between these two descriptions has the structure of a quantum error correcting code. In the context of an evaporating black hole, this code can be arbitrarily far from an isometry. Such codes are novel from a quantum information standpoint, and their properties are not yet well understood. I will describe a simple toy model of an evaporating black hole which allows for an explicit construction of the dictionary using the Euclidean gravity path integral. I will also describe the sense in which this dictionary is a non-isometric code, explain its basic properties, and comment on implications for semiclassical physics in the black hole interior.
Zoom link: https://pitp.zoom.us/j/94869738394?pwd=dGNBWXpmTTZaRSs3c0NQUDA1UkZCZz09
-
Quantum Field Theory II - Lecture 221130
PIRSA:22110011 -
Statistical Physics - Lecture 221130
PIRSA:22110019 -
QFT2 - Quantum Electrodynamics - Afternoon Lecture
Cliff Burgess McMaster University
This course uses quantum electrodynamics (QED) as a vehicle for covering several more advanced topics within quantum field theory, and so is aimed at graduate students that already have had an introductory course on quantum field theory. Among the topics hoped to be covered are: gauge invariance for massless spin-1 particles from special relativity and quantum mechanics; Ward identities; photon scattering and loops; UV and IR divergences and why they are handled differently; effective theories and the renormalization group; anomalies.
-
Words to Describe a Black Hole
Ying Lin Harvard University
We revamp the constructive enumeration of 1/16-BPS states in the maximally supersymmetric Yang-Mills in four dimensions, and search for ones that are not of multi-graviton form. A handful of such states are found for gauge group SU(2) at relatively high energies, resolving a decade-old enigma. Along the way, we clarify various subtleties in the literature, and prove a non-renormalization theorem about the exactness of the cohomological enumeration in perturbation theory. We point out a giant-graviton-like feature in our results, and envision that a deep analysis of our data will elucidate the fundamental properties of black hole microstates.
Zoom link: https://pitp.zoom.us/j/96037678536?pwd=eGdhTWF3UVN1em5uZVpJbWYyM2tzUT09
-
Shapes of non-Gaussianity in warm inflation
Mehrdad Mirbabayi Institute for Advanced Study (IAS)
Sphaleron heating has been recently proposed as a mechanism to realize warm inflation when inflaton is an axion coupled to pure Yang-Mills. As a result of heating, there is a friction coefficient γ\propto T^3 in the equation of motion for the inflaton, and a thermal contribution to cosmological fluctuations. Without the knowledge of the inflaton potential, non-Gaussianity is the most promising way of searching for the signatures of this model. Building on an earlier work by Bastero-Gil, Berera, Moss and Ramos, we compute the scalar three-point correlation function and point out some distinct features in the squeezed and folded limits. As a detection strategy, we show that the combination of the equilateral template and one new template has a large overlap with the shape of non-Gaussianity over the range 0.01 <= γ/Η <= 1000 and in this range 0.7<|f_NL|<50.
Zoom link: https://pitp.zoom.us/j/95921707772?pwd=NUNhU1QrRm5HaDJNMEYyaTJXQmZnQT09
-
QFT2 - Quantum Electrodynamics - Morning Lecture
This course uses quantum electrodynamics (QED) as a vehicle for covering several more advanced topics within quantum field theory, and so is aimed at graduate students that already have had an introductory course on quantum field theory. Among the topics hoped to be covered are: gauge invariance for massless spin-1 particles from special relativity and quantum mechanics; Ward identities; photon scattering and loops; UV and IR divergences and why they are handled differently; effective theories and the renormalization group; anomalies.
-
Exactly solvable model for a deconfined quantum critical point in 1D
Carolyn Zhang University of Chicago
We construct an exactly solvable lattice model for a deconfined quantum critical point (DQCP) in (1+1) dimensions. This DQCP occurs in an unusual setting, namely at the edge of a (2+1) dimensional bosonic symmetry protected topological phase (SPT) with ℤ2×ℤ2 symmetry. The DQCP describes a transition between two gapped edges that break different ℤ2 subgroups of the full ℤ2×ℤ2 symmetry. Our construction is based on an exact mapping between the SPT edge theory and a ℤ4 spin chain. This mapping reveals that DQCPs in this system are directly related to ordinary ℤ4 symmetry breaking critical points. Based on arXiv:2206.01222.
Zoom link: https://pitp.zoom.us/j/93794543360?pwd=Y3lidGZhRFNrUjEyMVpaNEgwTnE3QT09